4-11- بررسی دیوار حائل 6 متری.. 64
4-12- نتایج زلزله UPLAND برای دیوار حائل 6 متری.. 65
4-13- نتایج زلزله GILORI برای دیوار حائل 6 متری.. 67
5-14- مقایسه نتایج دو زلزله UPLAND و GILORI برای نقاط انتخابی.. 69
4-15- بررسی دیوارحائل 9 متری.. 71
4-15-1- زلزله Gilori 71
4-5-2- زلزله Upland.. 73
4-16- بررسی دیوار 12 متری.. 77
4-16-1- زلزله Gilori 77
4-16-2- زلزله Upland.. 79
4-17- کلیات… 83
منابع و مآخذ: 85
فهرست اشکال
عنوان صفحه
شکل1-1- نیروهای وارده بر دیوارهای حائل.. 4
شکل1-2- دیوار حائل وزنی ونیمه وزنی.. 5
شکل1-3- دیوارحائل پشت بنددار و پایه دار. 6
شکل1-4- (a)دیوار حائل الواربست (b)دیوار حائل صندوقچه ای© دیوار حائل گابیونی.. 8
شکل1-5- دیوار MSE روکش شده توسط (a)پانلهای پیش ساخته(b) با بلوکهای پیش ساخته. 8
شکل1-6- دیوار ساخته شده از(a)شمعهای مماسی(b) شمعهای متقاطع.. 10
شکل2-1- نحوه تعیین طیف پاسخ جابجایی.. 18
شکل2-2-نحوه تعیین طیف پاسخ شبه شتاب… 18
شکل2-3-طیف پاسخ زلزله های ثبت شده در ایستگاه السنترو در طی سال های…. 19
شکل2-4-طیف طراحی میانگین و میانگین بعلاوه انحراف از معیار استاندارد برای میرایی 5%. 20
شکل2-5-نحوه ساخت طیف طراحی خطی.. 21
شکل2-6-ساخت طیف طراحی برای احتمال 84.1% و میرایی 5%. 22
شکل2-7-میانگین طیف های پاسخ برای شرایط مختلف محل.. 23
شکل2-8-میانگین طیف های پاسخ شتاب برای شرایط مختلف محل.. 23
شکل2-9-طیف های نسبی شتاب در 2 درصد میرایی برای چهار طبقه بندی خاک… 24
شکل2-10-تاثیر بزرگی زمین لرزه بر شکل های طیفی.. 25
شکل2-11-طیف طرح برای منطقه ای تحت تاثیر زمین لرزه ی حاصل از دو گسل.. 26
شکل3-1-سطح شکست و نیروهای در نظر گرفته شده در روش مونونوبه اکابه. 33
شکل3-2-مدل تحلیلی چودهاری.. 37
شکل3-3-دیاگرام آزاد مدل چودهاری.. 37
شکل3-4-سطح شکست و نیروها 40
شکل3-5-سیستم در نظر گرفته شده توسط استیدمن و زنگ…. 43
شکل3-6- سیستم آزمایش شده توسط ولتسوس و یونان. 48
شکل4-1- هندسه مدل به همراه مرزهای جاذب و جابجایی اعمال شده به کف مدل. 56
شکل4-2- مرحله اول خاکریزی.. 58
شکل4-3- مرحله دوم خاکریزی.. 58
شکل4-4- مرحله سوم خاکریزی.. 59
شکل4-5- مرحله چهارم خاکریزی.. 59
شکل4-6-توزیع فشار در دیوار پس از اجرای خاکریزی در چهار ضریب سختی چرخشی متفاوت… 61
شکل4-7-فشار جانبی دینامیکی محاسبه شده برای دیوار حائل طره توسط پانتامان. 63
شکل4-8- فشار جانبی دینامیکی محاسبه شده برای دیوار حائل وزنی توسط پانتامان. 63
شکل4-9- توزیع تنش جانبی در حالت استاتیکی برای دیوار حائل 6 متری.. 64
شکل4-10- نمودار توزیع تنش جانبی برای دیوار حائل 6 متری در حالت استاتیکی.. 65
شکل4-11- جابجایی افقی در مدل دیوار حائل 6 متری پس از زلزله. 65
شکل4-12- تاریخچه شتاب قائم در مدل دیوار حائل 6 متری پس از زلزله. 66
شکل4-13- تاریخچه شتاب افقی در مدل دیوار حائل 6 متری.. 66
شکل4-14- توزیع فشار جانبی دینامیکی در دیوار حائل 6 متری.. 66
شکل4-15- نمودار توزیع تنش جانبی دینامیکی در دیوار حائل 6 متری.. 67
شکل4-16- جابجایی افقی در مدل دیوار حائل 6 متری پس از زلزله. 68
شکل4-17- تاریخچه شتاب قائم در مدل دیوار حائل 6 متری پس از زلزله. 68
شکل4-18- تاریخچه شتاب افقی در مدل دیوار حائل 6 متری.. 68
شکل4-19- توزیع فشار جانبی دینامیکی در دیوار حائل 6 متری.. 69
شکل4-20- نمودار توزیع تنش جانبی دینامیکی در دیوار حائل 6 متری.. 69
شکل4-21- تاریخچه جابجایی در نقاط انتخابی مدل دیوار حائل 6 متری.. 69
شکل4-22- تاریخچه جابجایی در نقاط انتخابی مدل دیوار حائل 6 متری.. 70
شکل4-23- مقایسه نیروی افقی به وجد امده در دیوار حائل 6 متری.. 70
شکل4-24- جابجایی افقی در مدل دیوار حائل 9 متری پس از زلزله. 71
شکل4-25- تاریخچه شتاب افقی در مدل دیوار حائل 9متری.. 71
شکل4-26- تاریخچه شتاب قائم در مدل دیوار حائل 9متری.. 72
شکل4-27- توزیع فشار جانبی دینامیکی در دیوار حائل 9متری.. 72
شکل4-28- نمودار توزیع تنش جانبی دینامیکی در دیوار حائل 9متری.. 73
شکل4-29- جابجایی افقی در مدل دیوار حائل 9 متری پس از زلزله. 73
شکل4-30- تاریخچه شتاب افقی در مدل دیوار حائل 9متری.. 74
شکل4-31- تاریخچه شتاب قائم در مدل دیوار حائل 9متری.. 74
شکل4-32- توزیع فشار جانبی دینامیکی در دیوار حائل 9متری.. 74
شکل4-33- نمودار توزیع تنش جانبی دینامیکی در دیوار حائل 9متری.. 75
شکل4-34- مقایسه نیروی افقی به وجود آمده در دیوار حائل 9متری.. 75
شکل4-35- تاریخچه جابجایی در نقاط انتخابی مدل دیوار حائل 9متری.. 76
شکل4-36- تاریخچه جابجایی در نقاط انتخابی مدل دیوار حائل 9متری.. 76
شکل4-37- جابجایی افقی در مدل دیوار حائل 12متری پس از زلزله. 77
شکل4-38- تاریخچه شتاب افقی در مدل دیوار حائل 12متری.. 77
شکل4-39- تاریخچه شتاب افقی در مدل دیوار حائل 12متری.. 78
شکل4-40- توزیع فشار جانبی دینامیکی در دیوار حائل 12متری.. 78
شکل4-41- نمودار توزیع تنش جانبی دینامیکی در دیوار حائل 12متری.. 79
شکل4-42- جابجایی افقی در مدل دیوار حائل 12متری پس از زلزله. 79
شکل4-43- تاریخچه شتاب افقی در مدل دیوار حائل 12متری.. 80
شکل4-44- تاریخچه شتاب افقی در مدل دیوار حائل 12متری.. 80
شکل4-45- توزیع فشار جانبی دینامیکی در دیوار حائل 12متری.. 80
شکل4-46- نمودار توزیع تنش جانبی دینامیکی در دیوار حائل 12متری.. 81
شکل4-47- مقایسه نیروی افقی به وجود امده در دیوار حائل 9متری.. 81
شکل4-48- تاریخچه جابجایی در نقاط انتخابی مدل دیوار حائل 9متری.. 82
شکل4-49- تاریخچه جابجایی در نقاط انتخابی مدل دیوار حائل 9متری.. 82
فهرست جداول
عنوان صفحه
جدول1-1- انواع زاویه های اصطکاک داخلی برای کاربرد در مسائل مهندسی.. 13
جدول2-1- ضرایب بزرگنمایی برای ایجاد طیف طراحی خطی.. 21
این مطلب را هم بخوانید :
جدول 3-1- مقایسه مقادیر های بدست آمده از روش چودهاری و دیگر تئوری های لرزه ای.. 42
جدول 3-2- مقایسه فشار خاک لرزه ای محاسبه شده با بهره گرفتن از روش های مختلف…. 46
جدول4-1- مشخصات مصالح خاکی.. 57
جدول4-2- مشخصات المان Plate. 57
جدول 4-4- مقادیر شتاب افقی (متر/ مجذور ثانیه) حاصل از نرم افزار PLAXIS.. 61
جدول 4-5- مقادیر ضریب فشار جانبی فعال در حالت دینامیکی.. 62
جدول 4-6- مقایسه مقادیر فشار جانبی حاصل از تئوری و نرم افزار PLAXIS.. 84
فصل اول:
دیوار حائل
1-1- تاریخچه ساخت سازه های حائل
از زمانی که انسان ها زندگی کوچ نشینی را رها کردند- مقارن با ده هزار سال قبلاز میلاد مسیح- با هدف دفاع از خود شـروع به ساخت موانع صعب العبور نمودند. این ساخت و سازها با ساخت مقبره ها-با الهام گرفتن از اعتقادات مذهبی ماننـد عـروج بـه بهشت- ادامه پیدا کرد. از شواهد موجود چنین برمی آید که اولین آیده های ساخت یک سازه قائم برای نگهداری توده مـصالح رامی توان در مقبره های خرسنگی[1] در حوالی اقیانوس اطلس و در اروپا یافت. به عنوان مثال Newgarange Cairn در ایرلنـدکه متعلق به چهار هزار سال قبلاز میلاد مسیح است. این سازه مانند یک گنبد با قطر82 متر ساخته شـده اسـت. این سازه دارای ارتفاعی معادل 2/4 متر است که به کمک توده های سنگی که به صورت قائم مستقر شده اند (حداکثر تا ارتفـاع2/1 متر ) ساخته شده است. این توده های سنگی بدون کمک ملات مستقر شده اند. این سازه های حائل شامل مصالح سـنگی گردگوشه ای هستند که از بستر رودخانه های مجاور آورده شده اند.
سازندگان این سازه ها خیلی زود از مساله فشارهای موجود بر روی دیوارها مطلع گشتند و به کمک عوامل مختلف سعی داشتند تا آنرا به نحوی کاهش دهند. شواهد چنین تلاش هایی ر ا می توان در دو تکنیک کاملاً متفاوت به کار گرفته شده در ساخت این مقبره ها در سه هزار سال قبل از میلاد مسیح جستجو نمود. یکی از این تکنیک ها قرار دادن شبکه هـای تـوری ماننـد افقـی ودیگری تکنیک جداسازی و قسمت بندی بوده است. به عنوان مثال معماران ایرلندی از شبکه های ساخته شده به کمک ریـشهگ یاهان (تکنیک اول ) بین لایه های سنگ ریزه های گردگوشه استفاده می کردند. تکه های ریشه گیاهان خیلی راحت به یکـدیگرقفل و بست شده و این توریهای ساخته شده را در کنار یکدیگر قرار می دادند. آزمایشات انجام شده بر روی شبکه های ساخته شده توسط این مصالح و محاسبات نشان می دهند که این تکنیک از قابلیت مناسبی برای کـاهش فـشار خـاک در سـازه هـای حایل دایره ای برخوردار است. در صورت عدم استفاده از این نوع تکنیک واضح اسـت کـه مـصالح سـنگی بـسیار سـریع در اثـرفشارهای جانبی ایجاد شده ناپایدار می شدند و باعث خرابی سازه می گشتند(علیرضا زرکامی، 1385).