2-9-2-1-1زیر نمونه برداری…………………………………………………………………. 61
2-9-2-1-2بیش نمونه برداری………………………………………………………………… 62
2-9-2-1-3 SCM………………………………………………………………………………… 63
2-9-2-1-4 نمونه برداری پیشرفته…………………………………………………………… 63
2-9-2-1-5 تکنیک بیش نمونه برداری اقلیت مصنوعی…………………………………. 64
2-9-2-1-6 نزدیک ترین همسایه فشرده(CNN)………………………………………….. 64
2-9-2-1-7 نزدیک ترین همسایه تغییر یافته(ENN)……………………………………… 66
2-9-2-1-8 Tomek-Link…………………………………………………………………….. 67
2-9-2-2 روش های یادگیری جمعی……………………………………………………………… 68
2-9-2-2-1الگوریتم آموزشی Bagging……………………………………………………… 69
2-9-2-2-2 الگوریتم آموزشی Boosting…………………………………………………… 70
2-9-3 روش های یادگیری عدم تعادل داخلی برای ماشین بردار پشتیبان 71
2-9-3-1 هزینه خطای متفاوت…………………………………………………………………… 71
2-9-3-2 یادگیری یک کلاس…………………………………………………………………….. 73
2-9-3-3zSVM………………………………………………………………………………………. 73
2-9-3-4 روش های اصلاح کرنل………………………………………………………………….. 74
2-9-3-5 یادگیری فعال……………………………………………………………………………. 75
2-9-3-6 روش های ترکیبی………………………………………………………………………. 75
فصل سوم:روش تحقیق
3-1مقدمه……………………………………………………………………………………………………… 77
3-2 ماشین بردار پشتیبان فازی برای یادگیری عدم توازن کلاس…………………………………. 77
3-2-1 روش SVMFuzzy………………………………………………………………………………. 77
3-2-2متد FSVM-CIL…………………………………………………………………………………. 79
3-3 ماشین بردار پشتیبان حداقل مربعات (LS-SVM)……………………………………………….. 83
3-4 الگوریتم پیشنهادی…………………………………………………………………………………….. 87
فصل چهارم:محاسبات و یافته های تحقیق
4-1 مقدمه…………………………………………………………………………………………………….. 90
4-2 مجموعه داده ها………………………………………………………………………………………. 90
4-3 نتایج کارایی روش های مختلف بر روی مجموعه داده ها……………………………………. 91
فصل پنجم:نتیجه گیری و پیشنهادات
5-1 جمع بندی و نتیجه گیری……………………………………………………………………………. 94
5-2 کارهای آتی…………………………………………………………………………………………….. 96
منابع و مآخذ :………………………………………………………………………………………. 97
چکیده انگلیسی……………………………………………………………………………………………………….102
فهرست جداول
جدول 2-1 متغیرهای ارزیابی دسته بندی.. 29
جدول 4-1 جزییات مجموعه داده های نامتوازن. 90
جدول 4-2- مقایسه کارایی روش های مختلف… 92
این مطلب را هم بخوانید :
فهرست اشکال