فصل هشتم: پیشنهادات……………………………………………………………………………………………………..75
منابع…………………………………………………………………………………………………………………………………..77
فهرست جداول
عنوان و شماره | صفحه |
جدول6-1- فهرستی از پارامترهای مورد نیاز برای شبیه سازی فرایند انتقال جرم…………..51
جدول6-2- مقایسه مقدار ضریب نفوذ در سیستمهای دی اکسید کربن- هگزادکان و دی اکسید کربن- هپتان……………………………………………………………………………………………………………………………57
جدول6-3- مقایسه مقدار ضریب انتقال جرم مرزی برای سیستمهای مختلف در دماها و فشارهای متفاوت………………………………………………………………………………………………………………….58
فهرست اشکال
عنوان و شماره | صفحه |
شکل 2-1 شکل یک فیلم صابونی که روی چارچوبی فلزی کشیده شده است …………………………….6
شکل 2-2 استفاده از روش لوله مویین برای اندازه گیری کشش سطحی……………………………………….9 شکل 2-3 تعریف ابعاد و مولفه های توصیف شده در دستهی چهارم……………………………………………11
شکل 2-4 تعریف مولفه های روش قطره معلق………………………………………………………………………………11
شکل 2-5 شماتیک روش چرخش………………………………………………………………………………………………….12
شکل 3-1 شرایط انتقال جرم به کار گرفته شده در تعیین ضریب نفوذ با بهره گرفتن از تغییر حجم فاز گاز…………………………………………………………………………………………………………………………………………………….17
شکل 3-2 شماتیک تجهیزات آزمایشگاهی روش بدست آوردن ضریب نفوذ از طریق کشش سطحی ………………………………………………………………………………………………………………………………………………………….20
شکل3-3 تصویر شماتیک یک قطره که به وسیلهی گاز محاط شده است………………………………….21
شکل 5-1 شماتیک تجهیزات استفاده شده برای اندازه گیری کشش سطحی (1- محفظهی شیشه ای پر فشار، 2- دستگاه تولید کننده فشار، 3- مانومتر، 4- مخزن گاز، 5- مخزن مایع) …………34
شکل 5-1 شماتیک یک قطره مایع معلق در حضور گاز پر فشار دی کسید کربن……………………….37
شکل 6-1 کشش سطحی دینامیکی اندازه گیری شده برای سیستم دی اکسید کربن- هگزادکان در فشار MPa895/6 و دماهای مختلف………………………………………………………………………………………………45 شکل 6-2 کشش سطحی دینامیکی اندازه گیری شده برای سیستم دی اکسید کربن- هپتان در فشار MPa447/3 و دماهای مختلف…………………………………………………………………………………………….45
شکل 6-3 کشش سطحی دینامیکی اندازه گیری شده برای سیستم نیتروژن- هگزادکان در فشار MPa270/18 ودماهای مختلف……………………………………………………………………………………………………..46
شکل 6-4 کشش سطحی دینامیکی اندازه گیری شده برای سیستم ننیتروژن- هپتان در فشارMPa 270/18ودماهای مختلف …………………………………………………………………………………………….46
شکل 6-5 تغییرات کشش سطحی تعادلی با فشار برای مخلوط دی اکسید کربن- هگزادکان در دماهای مختلف…………………………………………………………………………………………………………………………………47
شکل 6-6 تغییرات کشش سطحی تعادلی با فشار برای مخلوط دی اکسید کربن- هپتان در دماهای مختلف ……………………………………………………………………………………………………………………………….48
شکل 6-7 تغییرات کشش سطحی تعادلی با فشار برای مخلوط نیتروژن- هگزادکان در دماهای مختلف………………………………………………………………………………………………………………………………………………48
شکل 6-8 تغییرات کشش سطحی تعادلی با فشار برای مخلوط نیتروژن- هپتان در دماهای مختلف …………………………………………………………………………………………………………………………………………………………48
شکل 6-9 منحنی کالیبراسیون برای سیستم دی اکسید کربن- هگزادکان در دماهای مختلف…50
شکل 6-10 منحنی کالیبراسیون برای سیستم دی اکسید کربن- هپتان در دماهای مختلف……..50
شکل 6-11 منحنی کالیبراسیون برای سیستم نیتروژن- هگزادکان در دماهای مختلف……………..51
شکل 6-12 منحنی کالیبراسیون برای سیستم نیتروژن- هپتان در دماهای مختلف……………………51
شکل 6-13 ضریب انتقال جرم مرزی بر حسب زمان برای سیستم دی اکسید کربن- هگزادکان در دماهای مختلف و فشار و فشار(آ) MPa 447/3 (ب) MPa481/4 (ج) MPa895/6……………….61
شکل 6-14 ضریب انتقال جرم مرزی بر حسب زمان برای سیستم دی اکسید کربن- هپتان در دماهای مختلف و فشار (آ) MPa 724/1 (ب) MPa447/3 (ج) MPa481/4………………………….62
شکل 6-15 ضریب انتقال جرم مرزی بر حسب زمان برای سیستم نیتروژن- هگزادکان در دماهای مختلف و فشار (آ) MPa 481/4 (ب) MPa618/8 (ج) MPa166/25 (د) MPa713/41…64
شکل 6-16 ضریب انتقال جرم مرزی بر حسب زمان برای سیستم نیتروژن- هپتان در دماهای مختلف و فشار (آ) 481/4 (ب) MPa618/8 (ج) MPa166/25………………………………………………66 شکل 6-17 تغییرات ضریب انتقال جرم مرزی با فشار و دما برای سیستم دی اکسید کربن- هگزادکان …………………………………………………………………………………………………………………………………………69
شکل 6-18 تغییرات ضریب انتقال جرم مرزی با فشار و دما برای سیستم دی اکسید کربن- هپتان……………………………………………………………………………………………………………………………………………….69
شکل 6-19 تغییرات ضریب انتقال جرم مرزی با فشار و دما برای سیستم نیتروژن- هگزادکان………………………………………………………………………………………………………………………………………….70
شکل 6-20 تغییرات ضریب انتقال جرم مرزی با فشار و دما برای سیستم نیتروژن- هپتان………..70
مقدمه
مطالات اخیر نشان میدهد که فرایند نفوذ مولکولی یک گاز مثل دی اکسید کربن، نقشی اساسی در فرایندهای استحصال نفتی بازی می کند. بنابراین مطالعه انتقال جرم در سیستمهای گاز-نفت، در شرایط دمایی و فشاری مخزن ضروری به نظر میرسد ]4-1[.
از نظر فیزیکی، فرایند نفوذ مولکولی گاز در نفت طی سه مرحله صورت میگیرد. ابتدا گاز تزریقی به سمت مرز گاز-نفت حرکت کرده و سپس در مرز نفوذ می کند و در نهایت وارد فاز نفتی میگردد. انتقال جرم گاز در نفت باعث میشود خصوصیات مرزی بین نفت خام و گاز تزریقی تغییر کند. در گذشته مطالعات زیادی برای تعیین پارامترهای انتقال جرم در سیستمهای مختلف گاز-نفت ارائه شده است. یکی از این روشها استفاده از تغییر کشش سطحی دینامیکی سیستم است ]5[.
کشش سطحی در مرز دو سیال، نتیجهی انرژی اضافهای است که در اثر نیروهای بین مولکولی اشباع نشده در سطح به وجود میآید ]6[. این پارامتر با روشهای گوناگونی قابل اندازه گیری است که در فصل دوم به طور کامل در مورد آنها توضیح داده شده است.
طبق بررسیهای به عمل آمده، کشش سطحی احتمالا مهمترین عاملی است که سبب میشود حدود یک سوم نفت درجا، پس از سیلابزنی با آب یا رانش با گاز، به صورت غیر قابل استحصال در بیاید ]8[.
از طرف دیگر مطالعه کشش سطحی در فرایندهای ازدیاد برداشت به روش سیلاب زنی با حلال اهمیت ویژهای مییابد. یک حلال می تواند با تزریق به مخزن نفت را جابهجا کند. این تزریق می تواند سبب جابجایی امتزاج پذیر (تک فازی) یا امتزاج ناپذیر (دو فازی) گردد ]7[.
مکانیزم های موثر در جابهجایی نفت به وسیله حلال عبارتند:
استخراج اجزای سبک[1](و حتی متوسط) نفت به وسیلهی سیال
کاهش کشش سطحی بین حلال و نفت و کاهش ویسکوزیته نفت از طریق حل شدن حلال در نفت[2]
- متورم شدن نفت از طریق نفوذ حلال درون نفت[3]
از بین روشهای موجود برای اندازه گیری کشش سطحی، روش قطره معلق[4]، در دما و فشار بالا کاربرد بیشتری یافته است.
در این تحقیق، با بهره گرفتن از داده های آزمایشگاهی کشش سطحی تعادلی و دینامیک، برای سیستمهای گاز- نرمال پارافین، دو نوع مدل انتقال جرمی مختلف بر روی سیستم قطرهی معلق بررسی، و روشی که نتایج آن منطبق بر نتایج آزمایشگاهی میشود به عنوان مدل اصلی انتقال جرم معرفی گردید. همین طور نحوهی تاثیر دما، فشار، زمان و نوع مواد شرکت کننده در فرایند، روی پروسهی انتقال جرم تعیین گردید.
فصل دوم
این مطلب را هم بخوانید :
2- مبانی تحقیق
در این فصل و فصل بعدی، توضیحاتی در مورد واژههای کلیدی موجود در عنوان پایان نامه داده خواهد شد. در ابتدا به تعریف کشش سطحی و روشهای اندازه گیری آن میپردازیم.
2-1- کشش سطحی تعادلی و روشهای اندازه گیری آن
در درون یک فاز مایع، مولکولها به طور کامل توسط مولکولهای دیگر محاط میشوند، به طوری که نیروی جذب در همهی جهتها یکسان است. اما در مرز، نیروهای بین مولکولی از یک جنس نیستند و در نتیجه همدیگر را خنثی نمی کنند.این بر هم کنش سبب به وجود آمدن نیرویی به سمت داخل میگردد. این پدیده دقیقا همان عاملی است که سبب میگردد قطرات کوچک، شکل کروی به خود بگیرند. بنابراین میتوان گفت کشش سطحی[5] عبارت است از تمایل سطح به انقباض، برای حداقل کردن مساحت بین سطحی ]9[.
از نظر فیزیکی، برای کشیدن یک فیلم صابون روی یک قاب سیمی شکل، بایستی نیرویی به اندازه F وارد شود تا از پارگی فیلم جلوگیری گردد. اگر فیلم به اندازه dx جابجا شود، انرژی آن به اندازه Fdx بالا میرود. اگر سیستم در حالت تعادل باشد، این تغییر انرژی بایستی دقیقا برابر با انرژی آزاد سطح گردد، یا به عبارتی
معادله (2-1) را میتوان به صورت زیر ساده نمود
این عبارت دقیقا معادل با کاری است که بایستی انجام شود تا مساحت سطح مایع را افزایش دهد و باعث شود سطح مایع، مانند یک پوست کشیده شده عمل کند که در اصطلاح علمی به آن کشش سطحی گفته میشود
هر چند در صنایع نفت و گاز کاهش کشش سطحی بین نفت خام و سیال تزریقی باعث افزایش تولید میگردد، اما در مواردی مانند صنعت روغن خوراکی تلاشها برای افزایش کشش سطحی صورت میگیرد تا با جذب کمتر این مواد، ضرر کمتری متوجه بدن گردد ]11[.
در چند دههی گذشته روشهای مختلفی برای اندازه گیری کشش سطحی بین مواد مختلف ارائه شده است. درلیخ و همکارانش، روشهای اندازه گیری کشش سطحی را به پنج دستهی کلی تقسیم بندی کردند که