4-7 ارتفاع کل گیاه. 60
4-8 وزن صد دانه 61
4-9 عملکرد 63
4-10 تجزیه خوشه ای صفات مورفولوژیکو صفات مولکولی 66
4-11کیفیت DNA استخراج شده با بهره گرفتن از ژل آگارز 1 درصد.. 67
4-12تنوع ژنتیکی ژنوتیپ های گلرنگ با بهره گرفتن از نشانگر مولکولی ISSR 67
4-13 همبستگی بین فاصله ژنتیکی بدست آمده بر اساس داده های مولکولی مارکر های ISSR و میزان هتروزیس برای صفات مورد بررسی………………………………………………………………………. 69
5 فصل پنجم 73
5-1 نتیجه گیری کلی 73
5-2 پیشنهادات : 74
فهرست اشکال:
شکل 4–1: خط رگرسیونWr-Vrبرای صفت تعداد روز تا شروع گلدهی Wr=aVr+b، Wr(کواریانس نتاج –والد) ،Vr (واریانس والدین )، نقاط ژنوتیپ های P1تا
P10می باشند. 49
شکل 4–2: خط رگرسیون Wr-Vr برای صفات تعداد روز تا متوسط گلدهی. Wr=aVr+b،Wr(کواریانس نتاج –والد) ،Vr (واریانس والدین )، نقاط ژنوتیپ های P1تا P10می باشند. 52
شکل4–3:خطرگرسیون Wr-Vr برای صفت تعداد روز تا پایان گلدهی . Wr=aVr+b،Wr(کواریانس نتاج –والد) ،Vr (واریانس والدین )، نقاط ژنوتیپ های P1تا P10 می باشند. 53
شکل 4–4:خط رگرسیون Wr-Vr برای صفت فاصله تا اولین شاخه فرعی .Wr=aVr +b،Wr(کواریانس نتاج –والد) ،Vr (واریانس والدین )، نقاط ژنوتیپ های P1تا
این مطلب را هم بخوانید :
نکات مهم در برخورد اول با یک خانم
P10می باشند. 56
شکل 4–5: خط رگرسیون Wr-Vr برای صفت تعداد شاخه فرعی در بوته Wr=aVr+b،Wr(کواریانس نتاج –والد) ،Vr (واریانس والدین )، نقاط ژنوتیپ های P1تا P10می باشند . 58
شکل 4–6: رگرسیون Wr-Vr برای صفت تعداد طبق در گیاه W=aVr + b،Wr(کواریانس نتاج –والد) ،Vr (واریانس والدین )، نقاط ژنوتیپ های P1تا P10می باشند. 59
شکل 4–7: خط رگرسیون Wr-Vr برای صفت ارتفاع گیاه .Wr=aVr +br، Wr(کواریانس نتاج –والد) ،Vr (واریانس والدین )، نقاط ژنوتیپ های P1تا P10می باشند. 61
شکل 4–8: خط رگرسیون Wr-Vr برای صفت وزن صد دانه Wr=aVr + b،Wr(کواریانس نتاج –والد) ،Vr (واریانس والدین )، نقاط ژنوتیپ های P1تا P10می باشند. 62
شکل 4–9: خط رگرسیون Wr-Vr برای صفت عملکرد . Wr = aVr + b، Wr(کواریانس نتاج.. 64
شکل 4–10: گروه بندی 10 ژنوتیپ والدینی گلرنگ بر اساس صفات مورفولوژیک با بهره گرفتن از روش UPGMA (1تا10 به ترتیب والدهایP1 تاP10 )می باشند. 66
شکل 4–11: بارگذاری DNA بر روی ژل آگارز یک درصد (ستونها از چپ به راست به ترتیب ژنوتیپ های p1 تا p10 می باشند ). 67
شکل 4–12:الگوی تکثیر توسط آغازگر 5′ – (TCC)5 RY-3′ 68
شکل 4–13: دندروگرام 10 والد گلرنگ بر اساس فاصله ژنتیکی نی با روش UPGMA با بهره گرفتن از داده های مولکولی ISSR . 69
فهرست جداول:
جدول 3–1:مشخصات آغاز گرهای ISSR مورد استفاده. 42
جدول 3–2: اجزاء مخلوط واکنش PCR برای تکثیر آغاز گرهای ISSR.. 43
جدول 3–3: برنامه چرخه حرارتی واکنش PCR برای تکثیر توسط آغازگرهای ISSR . 43
جدول 4–1 :خلاصه تجزیه واریانس صفات بر اساس روش 2 گریفینگ در تلاقی دای آلل لاین های اینبرد گلرنگ. 50
جدول 4–2: مقادیر ترکیب پذیری عمومی لاین های اینبرد گلرنگ برای برخی صفات مورد بررسی با بهره گرفتن از تلاقی دای آلل. 54
جدول 4–3: برآورد پارامترهای ژنتیکی برخی صفات مورد بررسی در تلاقی دای آلل لاینهای اینبرد گلرنگ 65
جدول 4–4: مقدار ماتریس تشابه 10 ژنوتیپ والدی گلرنگ بر اساس مارکر مولکولی ISSR.. 68
جدول 4–5: ضرایب همبستگی بین فاصله ژنتیکی حاصل از داده های مولکولی ISSR با میزان HPH و HMP برای صفات مورد بررسی در نتاج حاصل از تلاقی دای آلل لاینهای اینبرد گلرنگ. 70
جدول 4–6: مقدار فاصله ژنتیکی والدین بر اساس داده های مولکولی ISSR و میزان HHP (هتروزیس نسبت به والد برتر) و HMP (هتروزیس نسبت به میانگین والدین ) برای صفت عملکرد در تلاقی های دای آلل لاین های گلرنگ. 71
1 فصل اول
مقدمه
افزایش نیاز به روغنهای گیاهی و محدود بودن زمین های حاصلخیز ومنابع آب موجب شده استتا گیاهان دانه ای و روغنی با سازگاری بالا همچون گلرنگ (Carthamus tinctorius L.)مورد توجه قرارگیرند.کشت گلرنگ در ایران به عنوان یکی از مراکز عمده کشت وکار این محصول در دنیای قدیم (نولز،1969) همچنان رواج داشته و در حال توسعه می باشد. گلرنگ در گذشته بیشتر به منظور تهیه رنگدانه قرمز برای استفاده در صنایع رنگرزی و همچنین برای رنگ اغذیه کشت می شد و زراعت آن به منظور استحصال روغن خوراکی از سال 1336 در ایران آغاز گردید (زینعلی، 1378).تولید گلرنگ در ایران با متوسط 700 کیلوگرم در هکتار با متوسط جهانی آن (2000 کیلوگرم در هکتار) فاصله زیادی دارد(زینعلی ،1378).افزایش تولید گلرنگ و توانایی رقابت آن با سایر دانه های روغنی در ایران نیازمند اصلاح ارقامی با عملکرد دانه و میزان روغن بالا می باشد. از این رو افزایش عملکرد و میزان روغن دانه از اهداف مهم اصلاحی این گیاه به شمار می روند.
افزایش عملکرد در واحد سطح که مهمترین راه نجات بشر از فقر و گرسنگی استعمدتاً متکی بر اصلاح و ایجاد ارقام پر محصول با خصوصیات و پتانسیل های کمی و کیفی بالا می باشد و تنوع ژنتیکی اساس و پایه کار اصلاح نباتات است.یک اصلاح گر در صورتی می تواند در برنامه های اصلاحی خود موفق باشدکه شانس انتخاب مواد مناسب و تنوع برای او وجود داشته باشد.گاهی انتقال حتییک ژن مفید و با ارزش ازمنابع بومی و یا خویشاوندان وحشی آنها چه از طریق روش های معمول اصلاح نباتات و چه از طریق تکنیک های پیشرفته مهندسی ژنتیک می تواند تحول عظیم و غیر قابل تصوری در سرنوشت و تولید آن محصول در یک کشور ویا مناطق وسیعی از جهان ایجاد کند.این ژنها عمدتاً در ارقام بومی و خویشاوندان وحشی آنها طی قرن های متمادی بوجود آمده استکه می تواند در بهبود گیاه مورد استفاده قرار بگیرد (فرشاد فر،1377).