”M.Sc” پایان نامه برای دریافت درجه کارشناسی ارشد
مهندسی برق – کنترل
عنوان:
شناسایی فازی online برج تقطیر MIMO با بهره گرفتن از مدل TS
برای رعایت حریم خصوصی اسامی استاد راهنما،استاد مشاور و نگارنده درج نمی شود
تکه هایی از متن به عنوان نمونه :
چکیده
در این پایان نامه، شناسایی فازی سیستم غیرخطی MIMO برج تقطیر بر اساس مدل فازی (Takagi-Sugeno(TS، بررسی خواهد شد و بر روی مدل عمومی distillation column شبیه سازی شده در دو حالت LV-configuration و uncontrolled column مورد آزمایش قرار خواهد گرفت. لازم به تذکر است که در این پایان نامه شناسایی و کاربرد آن در سیستم های online مورد توجه اساسی میباشد.
در حالت offline یعنی هنگامیکه کل داده ها در ابتدای پروسه آموزش در دسترس است، ساختن مدل فازی TS در دو مرحله انجام می گیرد. در مرحله اول مجموعه های فازی (توابع عضویت) در قسمت مقدم rule تعیین میشوند. میتوان این مرحله را با بهره گرفتن از اطلاعات اولیه از پروسه و یا بوسیله تکنیک های data-driven انجام داد. در مرحله دوم پارامترهای مقدم هریک از زیر مدلهای خطی با بهره گرفتن از الگوریتم RLS محاسبه میشود. مشکل اصلی بدست آوردن مدل، شناسایی توابع عضویت مقدم است که در حقیقت مسئله بهینه سازی غیر خطی است. چونکه مدل فازی TS بدست آمده وابسته به توابع عضویت است، انتخاب مجموعه های فازی بر دقت مدل اثر خواهد گذاشت. بنابراین یکی از نکات اساسی برای بهبود دقت مدل، تنظیم دقیق مجموعه های فازی , بگونه ای است که خطای متوسط مربعی (mean-square) بین مدل تخمین زده شده و سیستم واقعی مینیمم شود.
در حالت online تمام داده ها را در ابتدای پروسه آموزش در اختیار نداریم، بنابراین آموزش مدل فازی TS باید با اولین نمونه داده شروع شود. در این شرایط، ساختار مدل در ابتدا
در دست نیست و به صورت تدریجی در خلال پروسه شناسایی تکامل می یابد. آموزش پیوسته online مدل TS، بر پایه متد clustering بازگشتی و غیر تکرارشونده بنا شده است که قسمت مقدم را تخمین می زند و الگوریتم RLS که پارامترهای زیر مدلهای خطی تالی را محاسبه می کند. در این روش، ساختار مدل در ابتدا شناخته شده نیست و در طی پروسه شناسایی تکامل می یابد. (قابل ذکر است که این تکامل بسیار آهسته تر از تکامل پارامترهای مدل صورت می گیرد.) در مدل eTS، پتانسیل داده جدید برای update کردن پایگاه قوانین استفاده میشود. در این الگوریتم داده های پرت هیچگونه شانسی برای اینکه به عنوان مرکز rule انتخاب شوند، ندارند. دلیل این مسئله روش خاص تعریف مراکز rule است. این مسئله بسیار مهم است که آموزش بدون هیچ گونه دانش اولیه از سیستم و فقط با بهره گرفتن از اولین داده آغاز میشود. این ویژگی جالب توجه کاربرد این شیوه را در بسیاری از سیستم های adaptive سودمند می سازد.
مشکل اصلی در این شیوه، تولید نامحدود rule در طی پروسه شناسایی مخصوصا در شرایط اولیه است. در این پایان نامه، دو شیوه برای مقابله با این مسئله ارائه شده است. در روش اول، شرایط ایجاد rule در الگوریتم اصلی به گونه ای اصلاح شده است که بتواند نرخ تولید rule را مخصوصا در آغاز پروسه آموزش کنترل کند که باعث کاهش تعداد rule می شود. این اصلاح باعث می شود که الگوریتم در شرایط اولیه با احتیاط بیشتری اضافه کردن rule را انجام دهد. سپس هنگامیکه اطلاعات بیشتری بدست آمد و پروسه شناسایی پیشرفت
این مطلب را هم بخوانید :
اعتیاد آورترین بازی موبایلی کدامند؟ - ایده یابان پویا ” جدیدترین مقالات و آموزش های کاربردی “
کرد، شرایط تولید rule به حالت اولیه اش برمیگردد وهمانند الگوریتم اصلی عمل میکند. روش دوم، یک مکانیزم جدید نظارت برای شناسایی و از بین بردن rule های غیر ضروری با بهره گرفتن از forgetting factor ارائه شده است.
همچنین در این پایان نامه، متد آنالیز برهم کنش برای سیستم های چندمتغیره ارائه شده است. در بسیاری از کاربردهای عملی، مدل کمی دقیق سیستم در دست نیست و یا بدست آوردن آن بسیار مشکل است. در این متد، سیستم غیرخطی MIMO ابتدا با بهره گرفتن از الگوریتم eTS مدلسازی میشود، سپس برهم کنش سیستم چندمتغیره حول یک نقطه کار خاص بر اساس RGA بررسی می شود.