4-1-3. پروفیل اسید چرب………………………………………………………………………………………………………………………………….42
4-1-4. نقطه ذوب لغزشی……………………………………………………………………………………………………………………………..……44
4-1-5. میزان چربی جامد…………………………………………………………………………………………………………………………………..45
4-1-6. خصوصیات رئولوژیکی………………………………………………………………………………………………………………………….…48
4 -1-7. منحنیهای نمودار همجامد…………………………………………………………………………………………………………………50
4-2. بخش دوم: مطالعات مدل سازی…………………………………………………………………………………………………………………....54
4-2-1. انتخاب متغیرها……………………………………………………………………………………………………………………………………...54
4-2-2. مدلسازی………………………………………………………………………………………………………………………………………………56
4-2-2-1. مدلسازی SFC به صورت تابعی از دما (SFCf(T)) 56
4-2-2-1-1. کاربرد تابع SFCf(T) در تعیین نقطه ذوب لغزشی.. 59
4-2-2-2. مدلسازی SFC به صورت تابعی از ساختار اسید چرب (SFCf(T)) 61
4-2-2-3. مدل سازی SFC به صورت تابعی از دما و SFA (SFCf(T,SFA)) 65
4-2-2-3-1. اعتبار سنجی مدل دو متغیره SFCf(T,SFA) 68
4-2-2-4. مدل سازی SMP به صورت تابعی از ساختار اسید چرب.. 71
4-2-2-4-1. اعتبار سنجی مدل SMPf(SFA) 75
فصل پنجم
نتیجه گیری و پیشنهادات……………………………………………………………………………………………………………….78
فصل ششم
منابع……………………………………………………………………………………………………………………………………………..82
فهرست جداول
جدول 3-1. ویژگیهای لیپوزیم TLIM…………………………………………………………………………………………………………………..33
جدول 4-1. محتوای اسید چرب آزاد مخلوطهای FHPO:SBO، قبل و بعد از اینتراستریفیکاسیون..……………….41
جدول 4-2. پروفیل اسید چرب روغنهای اولیه و مخلوطهای FHPO و SBO…………………………………………………..43
جدول 4-3. نقطه ذوب لغزشی و محتوای چربی جامد مخلوطهای اولیه و اینتراستریفیه شده………………………………48
جدول 4-6. ضرایب مدل گمپرتز SFCf(T)، SFCf(SFA)، SFCf(T,SFA)، SMPf(SFA) و ارزیابی نیکوئی برازش…………………………………………………………………………………………………………………………………………………………………………..58
جدول 4-7. نقطه ذوب لغزشی مخلوطها و نقطه عطف توابع SFCf(T)…………………………………………………………………61
جدول 4-9. ضرایب مدل گمپرتز SFCf(SFA) و ارزیابی نیکوئی برازش………………………………………………………………….64
جدول 4-10. ضرایب مدل گمپرتز SFCf(T,SFA) و ارزیابی نیکوئی برازش…………………………………………………………….67
جدول 4-12. ضرایب مدل گمپرتز SMPf(SFA) و ارزیابی نیکوئی برازش……………………………………………………………….74
فهرست اشکال
شکل 1-1. مراحل هیدرولیز آنزیمی روغنها و چربیها………………………………………………………………………………………………7
شکل 1-2. مکانیسم اینتراستریفیکاسیون آنزیمی……………………………………………………………………………………………………….8
شکل 1-3. مقایسه منحنیهای SFC محصول اینتراستریفیه و شورتنینگ نانوائی نوع تجاری………………………………13
شکل 1-4. ارتباط خطی بین دو متغیر………………………………………………………………………………………………………………………17
شکل 4-1. نمودار SMP به صورت تابعی از محتوای FHPO………………………………………………………………………………..45
شکل 4-2. منحنی SFC مخلوطها، قبل و بعد از اینتراستریفیکاسیون آنزیمی………………………………………………………46شکل 4-3. نمودارهای حاصل از آزمون روبش-فرکانس مخلوطهای اولیه و اینتراستریفیه……………………………………..50
شکل 4-4. منحنیهای همجامد مخلوطها، قبل و بعد از اینتراستریفیکاسیون آنزیمی…………..……………………………….53
شکل 4-5. تأثیر دما بر روی SFC مخلوطهای FHPO و SBO، اینتراستریفیه شده به روش آنزیمی……………….56
شکل 4-6. نمودار نقطه ذوب لغزشی به صورت تابعی از نقطه عطف توابع SFCf(T)………………………………………………61
شکل 4-7. تأثیر محتوای اسید چرب اشباع بر روی SFC مخلوطهای FHPO و SBO…………………………………….63
شکل 4-8. همبستگی بین ضرایب مدلهایSFCf(T) و محتوای SFA یا ضرایب مدلهای SFCf(SFA) و دما….66
شکل 4-9. نمودار سه بعدی SFC آزمایشی (نمودار پراکنش) و پیش بینی شده مخلوطهای دوتایی FHPO و SBO ………………………………………………………………………………………………………………………………………………………………………….67
شکل 4-10. اعتبارسنجی مدل SFCf(T,SFA)، مخلوطهای اینتراستریفیه شده آنزیمی…………………………………………70
شکل 4-11. اعتبارسنجی مدل SFCf(T,SFA)، مخلوطهای اینتراستریفیه شده شیمیایی………………………………………71
شکل 4-12. تأثیر SFA بر روی نقطه ذوب مخلوطهای دوتایی اینتراستریفیه شده آنزیمی FHPO:SBO………74
شکل 4-13. اعتبارسنجی مدل SMPf(SFA) مخلوطهای حاوی پالم اولئین…………………………………………………………..76
شکل 4-14. اعتبارسنجی مدل SMPf(SFA) مخلوطهای حاوی سویای کاملاً هیدروژنه………………………………………..77
فصل اول
مقدمه و کلیات |
1-1. مقدمه
محتوای چربی جامد (SFC[1]) و نقطه ذوب، پارامترهای مناسبی در ارتباط با خصوصیات فیزیکی چربیها میباشند (زینال، 1999). SFC به صورت درصد اجزاء جامد چربیها در دماهای مشخص تعریف میشود و تعیین کننده رفتار ذوبی و پلاستیسیته آنها میباشد. این خصوصیت تأثیر بسزایی بر کاربرد ویژهی محصول از جمله ظاهر عمومی، بسته بندی آسان، مالش پذیری، تراوش روغن و خصوصیات ارگانولپتیکی دارد (نورلیدا و همکاران، 2002).
به طور کلی محتوای چربی جامد از دمایی که در آن نگهداشته میشود، نوع چربی یا روغن (شامل اسید چرب، تری آسیل گلیسرول (TAG)) و ساختار کریستالی تأثیر میپذیرد (تلس دوس سنتوس و همکاران، 2013). تغییرات SFC در نتیجه انجام واکنشهای فیزیکی (هیدروژناسیون[2] و جزء به جزء کردن[3]) و شیمیایی روغنها (اینتراستریفیکاسیون[4]) حاصل میشود که منجر به تغییر نقطه ذوب چربیها میگردد (کارابولوت و همکاران، 2004).
اینتراستریفیکاسیون، مهمترین روش اصلاح خصوصیات فیزیکوشیمیایی[5] چربیها است که موجب تغییر ساختار تری آسیل گلیسرول، محتوای چربی جامد، نقطه ذوب و رفتار کریستالیزاسیون یا تبلور محصول میگردد. نظارت بر روند واکنش جهت حصول محصولات مختلف چربی، اغلب بوسیله آنالیزهای TAG، اندازه گیری نقطه ذوب و SFC صورت میگیرد ( ژانگ و همکاران، 2004؛ روسو و مارانگنی، 2008 و ریبیرو و همکاران، a2009). بر این اساس مقادیر SFC و نقطه ذوب، میتوانند با ارزشترین داده ها در تعیین خصوصیات چربیها باشند.
SFC توسط دستگاه رزونانس مغناطیسی هسته ای متناوب (pNMR[6]) اندازه گیری میشود که به دلیل قابل دسترس نبودن چنین دستگاههای پیشرفتهای در همه آزمایشگاههای آنالیز مواد غذایی محدودیتهایی در اندازه گیری آن ایجاد شده است (فرمانی، 1393). همچنین اندازه گیری نقطه ذوب چربیها با روشهای آزمایشگاهی AOCS، همواره زمانبر است. بنابراین توصیف مدلهایی که بتواند مقادیر SFC و نقطه ذوب را جهت تولید محصولات عملگر و مطلوب قبل از انجام هر گونه آزمایش و آنالیزهای دستگاهی پیش بینی کند، منطقی به نظر میرسد.
تحقیق حاضر با بهره گرفتن از داده های بدست آمده از اینتراستریفیکاسیون آنزیمی مخلوط دوتایی پالم اولئین کاملاً هیدروژنه (FHPO[7]) و روغن سویا (SBO[8]) علاوه بر بررسی خصوصیات فیزیکوشیمیایی محصولات اینتراستریفیه شده به مطالعه روابط ریاضی بین SFC و خصوصیات مستقلی چون ساختار اسید چرب و دماهایی که SFC در آن اندازه گیری میشود، پرداخته است. همچنین در این پژوهش روابط بین نقطه ذوب لغزشی (SMP [9]) محصولات اینتراستریفیه شده و ساختار اسید چرب بررسی شده است. به طور کلی بهره گیری از چنین مدلهایی، استفاده از مواد واکنش دهنده، زمان و هزینه انجام واکنش را کاهش داده و در توسعه فرمولاسیون جدید چربیها مفید واقع شوند.
1-2. کلیات تحقیق
1-2-1. کلیات تحقیقات تجربی
روغنها و چربیهای طبیعی، دارای الگوی توزیع اسید چرب خاصی در مولکولهای تری آسیل گلیسرول خود هستند. این الگوی توزیع اسید چرب موجب محدودیت دامنه کاربرد آنها شده است (نُرآینی، 1994). به منظور گسترش استفاده از آنها، فرایندهای فیزیکی نظیر جزء به جزء کردن و فرایندهای شیمیایی نظیر هیدروژناسیون و اینتراستریفیکاسیون و یا ترکیبی از آنها به کار گرفته میشود (رِی و باتاکاریا، 1996). طی فرایند هیدروژناسیون، با اضافه شدن هیدروژن به پیوندهای دوگانه اسیدهای چرب غیر اشباع، نسبتهای مختلفی از اسیدهای چرب با درجه غیر اشباع پایینتر و یا اسیدهای چرب اشباع شده و ایزومرهای هندسی[10] (ترانس) [11]به وجود میآیند (فرمانی، 1384).
نگرانیهای موجود در خصوص اثرات نامطلوب اسیدهای چرب ترانس باعث افزایش توجه محققان و صاحبان صنعت به شیوه های جایگزین هیدروژناسیون نسبی نظیر 1- اصلاح تکنولوژی هیدروژناسیون 2- کاربرد اینتراستریفیکاسیون 3- کاربرد فراکسیونهایی با مواد جامد بالا از روغنهای طبیعی 4- استفاده از روغنهای اصلاح نژاد شده[12]، گردیده است (خاتون و ردی، 2005). کاربردیترین و مؤثرترین روش جایگزین هیدروژناسیون، اینتر استریفیکاسیون یا استری کردن داخلی تری آسیل گلیسرولها میباشد (فرمانی، 1384).
در هیدروژناسیون کامل با افزایش درجه هیدروژناسیون، با وجود کاهش محتوای اسیدهای چرب ترانس، کاهش مالش پذیری محصول و یا کاهش ذوب پذیری چربی در دهان دیده میشود. علاوه بر این، خطرات ناشی از افزایش میزان اسیدهای چرب اشباع به دلیل افزایش میزان کلسترول تام، هم وجود دارد (خاتون و ردی،
این مطلب را هم بخوانید :
چرا پیاده روی به شما کمک نمی کند وزن کم کنید؟
2005). همچنین در هیدروژناسیون نسبی، علیرغم حصول خصوصیات مالش پذیری مطلوب در محصول، محتوای اسیدهای چرب ترانس افزایش مییابد.
جزء به جزء کردن، فرایندی جهت تفکیک جزء جامد روغن از جزء مایع میباشد. این روش کمتر به صورت یک فرایند مستقل به کار میرود و بیشتر به صورت قسمتی از فرایندهای پیچیده عمل می کند. با وجود کاربرد بالای جزء به جزء کردن، این روش، برخلاف اینتراستریفیکاسیون، نمی تواند خصوصیات فیزیکی روغن یا چربی را تغییر دهد (ابراهیمی و فرمانی، 1391).
روغنهای اصلاح نژاد شده به طور کلی شامل سه گروه 1- روغن با محتوای بالای اسید اولئیک 2- روغن با محتوای متوسط اسید لینولئیک 3- روغن با محتوای کم لینولنیک اسید میباشند. این روش اصلاحی به دلیل گران بودن و همچنین تولید روغنهایی با محتوای بالای اسید اولئیک که در دمای اتاق مایع اند، کاربرد کمتری نسبت به سایر روشها دارد (هایومن، 1994).
در سالهای اخیر، كشورهای پیشرفته صنعتی، با توجه به آثار نامطلوب اسیدهای چرب ترانس حاصل از هیدروژناسیون نسبی که باعث بروز بیماریهای قلبی عروقی، اختلال در رشد و تکامل جنین، افزایش کلسترول [13]LDL،کاهش کلسترول HDL[14]و کاهش تشکیل پروستاگلاندینها[15] میشوند، اقدام به تولید چربیهای تجاری بدون ترانس که عمدتاً از طریق فرایند استری كردن انجام میشود، کردهاند (اروموغان و همکاران، 2008). با بهره گرفتن از اینتراستریفیكاسیون علاوه بر تولید فرآوردههای بدون اسیدهای چرب ترانس، امکان استفاده از منابع روغنی كه بنا به دلایلی، محدودیت در استفاده از آنها در صنایع غذایی وجود داشته (اغلب به دلیل نداشتن خواص كاری مناسب یا بالا بودن درصد اسیدهای چرب اشباع) نظیر استئارین[16] پالم، استئارین هسته پالم[17] و پیه گاو[18]، فراهم میشود (فرمانی، 1384). اینتراستریفیکاسیون خصوصیات فیزیکوشیمیایی مطلوب نظیر پروفیل ذوبی مناسب، بهبود خصوصیات کریستالی و محتوای چربی جامد و تركیب خواص مطلوب تمامی روغنهای به كار رفته در یک مخلوط را موجب میشود (لی و همکاران، 2010).
1-2-1-1. اینتراستریفیکاسیون
اینتراستریفیکاسیون به فرایندی گفته میشود که در طی آن موقعیت اسیدهای چرب در ساختمان تری آسیل گلیسرول، در حضور کاتالیستهای شیمیایی نظیر متوکسید سدیم[19] و یا بیوکاتالیستها نظیر لیپازها[20] تغییر یافته که در نتیجهی آن، خصوصیات فیزیکوشیمیایی روغنها تغییر می کند (آسیف، 2011). به طور کلی اینتراستریفیکاسیون برای توصیف واکنش بین یک استر (استر اسید چرب مانند تری آسیل گلیسرول) با یک اسید چرب (اسیدولیز)[21]، یا یک الکل (الکولیز)[22] و یا با یک استر اسید چرب دیگر (تبادل استر-استر یا ترانس استریفیکاسیون[23]) به کار میرود. اینتراستریفیکاسیون در واقع یک راه مؤثر برای تغییر و کنترل خصوصیات ذوبی و کریستالی روغنها و چربیها بدون تغییر دادن درجه غیراشباعیت یا حالت ایزومری اسیدهای چرب میباشد (فرمانی، 1384).
[1] Solid fat content