خوشه بندی مشتریان بر اساس ارزش آنها، بصورت موازی از الگوریتم خوشه بندی K-Means و K-Harmonic Means استفاده کردیم سپس از الگوریتم استقرایی که یکی از الگوریتم های کشف قوانین وابستگی است استفاده کردیم و تکنیک قوانین وابستگی را بر روی داده های مربوط به هر یک از خوشه هایی که توسط K-Means مشخص شده اند بکار گرفتیم. با بهره گرفتن از قوانین بدست آمده از هر خوشه راهبردهای شخصی سازی تبلیغات برای هر خوشه از مشتریان را مشخص کردیم. برای هر مشتری علاوه بر قوانین مربوط به خوشه اصلی که به آن تعلق دارد از قوانین خوشه های دیگری که درجه تعلق مناسبی نسبت به آنها دارد نیز برای تعیین راهبردهای شخصی سازی تبلیغات استفاده کردیم تا بدین ترتیب تعداد تبلیغات پیشنهادی که مطابق با علایق مشتری است را بیشتر کنیم.
فصل اول: مقدمه و کلیات تحقیق
1-1- مقدمه
پیشرفت فناوری های اطلاعات و ارتباطات، حجم وسیعی از اطلاعات و داده های مفید را در دسترس قرار داده است.با توجه به رشد روز افزون بازار خرید اینترنتی و رقابت شدید بین شرکت ها و سایت های فروش اینترنتی، استفاده بهینه از اطلاعات بازار و مشتری اهمیت ویژه ای پیدا کرده است.
ایده ها و راه حل های گوناگونی برای استفاده از اطلاعات بدست آمده از بازار و مشتریان جهت جذب مشتری و مهمتر از آن جهت نگهداری مشتریان فعلی پدید می
آیند که یکی از این ایده ها، استفاده از اطلاعات مشتری برای بدست آوردن و پیش بینی کردن علایق آن است.فرایندهای زیادی را می توان برای بدست آوردن علایق مشتریان متصور شد، اما یکی از این فرایندها که امروزه با استقبال زیادی از سوی شرکت های تجاری و صاحبان سایت های فروش اینترنتی مواجه شده است، استفاده از تکنیک های داده کاوی1 می باشد.
با بهره گرفتن از تکنیک خوشه بندی2 و تکنیک قوانین انجمنی3 که از تکنیک های داده کاوی به شمار می آیند و بر روی داده های مربوط به رفتار خرید پیشین مشتری اعمال می شوند، می توان اطلاعات مفیدی جهت پیش بینی رفتار خرید آتی مشتری کسب نمود.شرکت ها از این اطلاعات استفاده می کنند تا بتوانند کالاهای مورد علاقه مشتریان را در مکان و زمان مناسب به آنها پیشنهاد دهند و بدین ترتیب در جهت سیاست نگهداری و حفظ مشتریان گام بردارند.
2-1- بیان مسئله
به خاطر بازار رقابتی شدیدی که امروزه در تجارت الکترونیک وجود دارد شرکت های تجاری در تلاش هستند تا شرایط مدیریت ارتباط با مشتری1 را هرچه بیشتر بهبود بخشند تا بتوانند هرچه بیشتر مشتریان فعلی را حفظ کنند و همچنین دیگر مشتریان را هم جذب کنند.
یکی از راه هایی که برای این اهداف شرکت ها و صاحبان کالا مصور است تبلیغ کالاها یا خدماتی است که مشتریان علاقه بیشتری به خرید یا دریافت آنها دارند. بنابراین شرکت ها باید به دنبال این باشند تا تبلیغاتشان بر اساس ترجیحات فردی مشتریان باشد، یعنی تبلیغات را برای هر مشتری شخصی سازی2 کنند.
شرکت های تجاری برای اینکه بتوانند تبلیغات را برای مشتریان خود شخصی سازی کنند نیاز دارند تا اطلاعاتی در مورد علایق این مشتریان بدست آورند. بعضی از آنها برای بدست آوردن این اطلاعات از روش پرسشنامه استفاده می کنند و در ابتدای ارتباط با مشتری پرسش هایی در مورد شخص مشتری از قبیل سن و جنسیت و
این مطلب را هم بخوانید :
… از او می پرسند. بعلاوه همچنین ممکن است سوالاتی در مورد علایق خرید مشتری نیز از او پرسیده شود.این روش می تواند برای مشتری آزاردهنده و وقت گیر باشد، از این رو ممکن است مشتری عملیات خرید خود از سایت را متوقف کند.روش دیگری که برای جمع آوری اطلاعات مورد نیاز درباره علایق مشتری وجود دارد استفاده از داده های مورد استفاده پیشین کاربر از وب1 می باشد که با بهره گرفتن از این داده ها و بررسی آنها شرکت ها می توانند اطلاعاتی در مورد رفتار خرید کاربران بدست آورند.
داده کاوی ابزاری است که به شرکت ها کمک می کند تا ترجیحات و علایق فردی کاربران و مشتریان را بر اساس داده های به جای گذاشته شده از آنها استخراج کنند و بر این اساس استراتژی های بازاریابی خود را برقرار کنند و به شخصی سازی تبلیغات بپردازند. شرکت ها با بهره گرفتن از ابزارهای داده کاوی ابتدا داده های مورد نیاز برای کاوش رفتار خرید مشتری را آماده می کنند و با بهره گرفتن از الگوریتم های متعدد خوشه بندی می توانند مشتریان خود را بخش بندی کنند.بعد از آن می توانند با بهره گرفتن از الگوریتم های کاوش قوانین وابستگی، قوانینی برای پیش بینی رفتار خرید آتی مشتری بدست آورند و با بهره گرفتن از این قوانین، راهبردها و روش های شخصی سازی تبلیغات برای مشتری را مشخص کنند.