بدون نظارت، بدون دریافت برچسب کلاس دادههای آموزشی، سعی در دستهبندی دادههای آموزشی میکنند؛ به این نوع از یادگیری، خوشهبندی[17] نیز گفته میشود. گاهی تنها بخشی از برچسب کلاس دادههای آموزشی در دسترس است بنابر این دسته سوم از الگوریتمها، یعنی الگوریتمهای نیمهنظارتی، عملکردی مابین الگوریتمهای نظارتی و الگوریتمهای بدون نظارت دارند. در یادگیری فعال، سیستم در مرحله آموزش، با انسان تعامل دارد؛ به این صورت که انسان برچسبهای مناسب را به دادههای ورودی نسبت میدهد و سیستم با توجه به برچسبهای اختصاص داده شده، به پایش اطلاعات خود و مدل آموزشی میپردازد.
این رساله منحصرا بر روشهای دستهبندی مبتنی بر یادگیری نظارتی تمرکز دارد. به بیان رسمیتر، الگوریتمهایی که از یک مجموعه آموزشی[18] مانند D، شامل n داده نمونه ورودی به فرم {(x1,y1), , (xn,yn)} که هر نمونه متشکل از یک بردار خصیصه[19] با بعد d و یک برچسب کلاس که برای مسائل K کلاسه، آموزش میبینند و خروجی این آموزش، یک دستهبندیکننده[20] یا فرضیه[21] است که در حالت ایده آل یک مرزبندی تصمیم[22] دقیق برای جداسازی کلاسها در کل فضای انجام خواهد داد.
3-1- الگوریتمهای یادگیری جمعی
القای دستهبندیکننده ها هنگامی که تعداد دادههای آموزشی به طرز چشمگیری زیاد باشد با مشکل روبهرو خواهد شد. این پدیده باعث به وجود آمدن مرزهای کلاس[23] پیچیده میشود؛ یادگیری دقیق این مرزها، برای دستهبندیکنندههایی که سعی در تولید یک قانون برای توصیف داده دارند، به چالشی عظیم تبدیل می شود. پیچیدگی این وضعیت زمانی به اوج خود می رسد که بردار خصیصه دادهها، دارای ابعاد بالا[24] باشد.
رواج خانواده خاصی از الگوریتمهای یادگیری ماشین، تحت عنوان الگوریتمهای یادگیری جمعی که سعی در مواجهه و برطرف نمودن چالشهای موجود دارند، طی سالهای اخیر بسیار چشمگیر بوده است. این دسته از الگوریتمها، موفقیت خود را مرهون عملکرد محافظهکارانه خود میباشند. در حالی که اکثر الگوریتمهای یادگیری از القای یک دستهبندیکننده برای توصیف داده استفاده میکنند، الگوریتمهای یادگیری جمعی از تعداد زیادی یادگیرهای ضعیف[25]، که قدرت پیش بینی آنها اندکی بهتر از حدس تصادفی[26] است، بهره می برند. به بیان دیگر، ایده اصلی الگوریتمهای یادگیری جمعی، بهکارگیری چندین یادگیر و ترکیب نتیجه پیش بینی آنها به عنوان یک گروه از دستهبندیکنندهها و بالا بردن دقت کلی[27] یادگیری است. به هر یک از اعضای موجود در این گروه از یادگیرها، یادگیر پایه[28] گفته میشود. در مسائل دستهبندی، الگوریتم یادگیری جمعی به عنوان سیستم دستهبندی چندگانه[29]، ائتلاف دستهبندیکننده ها[30]، کمیتهای از دستهبندیکنندهها[31] و یا ترکیب دستهبندیکنندهها[32] نیز خوانده میشود. پیش بینی هر یک از اعضا ممکن است به صورت یک عدد حقیقی[33]، برچسب کلاس، احتمال پسین[34] و یا هر چیز دیگری باشد. چگونگی ترکیب رأی اعضای الگوریتم، در نتیجه گیری نهایی بسیار مهم است که شامل میانگینگیری، رأی به
اکثریت[35] و روشهای احتمالی میشود.
4-1- دسته بندی کننده های سریال
ویولا و جونز [3] در سال 2001 برای اولین بار قوانین روشهای مبتنی بر یادگیری جمعی را به کمک مفهوم یادگیری کلان-به-جزیی[1] توسعه دادند. با این گام عظیم، آنها روشی را ابداع کردند که انجام دستهبندی دقیق و سریع بر روی مجموعه دادههای تشخیص چهره[2]، که شامل صدها هزار داده بودند، را امکان پذیر می ساخت. روش ابداعی آنها به صورت یک ساختار سریال بود که دستهبندیکنندههای جمعی را در لایههای متوالی به صورتی کنار هم قرار میداد که لایههای اولیه شامل تعداد کمی از دستهبندیکنندهها بود و این تعداد در لایههای بعدی به مرور افزایش مییافت. این روش تاثیر بسزایی در تولید دستهبندیکننده های پیمانهبندیشده[3] و دقیق داشت که به طبع، نه تنها در زمینه تشخیص چهره، بلکه در زمینههای مختلف کاربرد داشت. با این حال آموزش دستهبندیکنندههای موثر با بهره گرفتن از روش ویولا و جونز، به علت زمانبر بودن بیش از حد مرحله آموزش، تقریبا مقرونبهصرفه نبود.
در تلاشی برای کاهش زمان آموزش دستهبندیکنندههای سریال در مواجهه با مجموعه دادههای بسیار بزرگ، بارکزاک و همکاران [4] یک روش سریال تودرتو ارائه کردند. آنها نام روش خود را PSL[4] نهادند که بیانگر دستهبندیکنندههای تودرتوی سریال متشکل از دستهبندیکنندههای قوی موازی در هر لایه است.
[1] Coarse-to-fine learning
[2] Face recognition
[3] Boosting
[4] Parallel Strong classifiers within the same Layer
[1] Artificial intelligence
[2] Machine learning
[3] Pattern recognition
این مطلب را هم بخوانید :
[4] Input data
[5] Unseen data
[6] Classification