دسترس از سیستم اصلی اندازهگیری میشود. با بهره گرفتن از مدلی که در ابتدای کار طراحی شد، مقادیر پارامترهای اندازهگیری شده را تخمین میزنیم و پارامترهای واقعی سیستم با پارامترهای تخمینی از مدل سیستم مقایسه میشوند. سیگنالی به نام سیگنال باقیمانده از تفاوت بین مقادیر واقعی اندازهگیری شدهی پارامتر ها و مقدار تخمینی آنها ساخته میشود. در ادامه حد آستانهای بررای سیگنال باقیمانده تعریف میشود. سیگنالهای باقیماندهی مختلفی برای تشخیص رویداد عیب در قسمت های مختلف سیستم قابل نعریف هستند. تحلیل هر یک از این سیگنالهای باقیمانده میتواند در بخش تشخیص محل خطا مفید باشد.
گاه با در نظر نگرفتن متودهای عیب یابی سخت افزاری، که در دسته بندی قبل دستهی الف را شامل میشدند، باقی روش های عیب یابی را در سه دسته جای میدهند. همانند آن چه در [1] آمده است. سه دستهی یاد شده به این صورت میباشند:
الف. روشهای بر پایهی داده[18]، این دسته از روشهای عیبیابی را میتوان معادل دستهی بر پایهی سیگنال در دستهبندی قبلی دانست. مقادیر اندازه گیری لازم به صورت مستقیم از داده های فرایند ضبط میشوند. سیستمهای کنترل صنعتی مدرن، از یک سیستم کاملا صنعتی گرفته تا یک ماشین تولید کاغذ ساده، سیستمهای بزرگ مقیاس[19] همراه با ابزارآلات پیچیدهی فر آیندهای مدرن هستند. سیستم های بزرگ مقیاس حجم عظیمی از دادهها را تولید میکنند. گرچه این دادههای تولیدی معادل اطلاعات زیاد از سیستم هستند؛ اما از سوی دیگر این مسئله حائز اهمیت است که اپراتور و یا مهندس بتواند با مشاهده کردن دادههای ضبط شده از سیستم به راحتی عملکرد سیستم را مورد ارزیابی قرار دهد. نقطهی قوت متودهای عیب یابی برپایهی داده این است که میتواند دادهها با ابعاد بالا را به فضای با ابعاد کوچکتر انتقال دهد، که در فضای جدید تنها دادههای مهم موجود هستند.با محاسبهی اطلاعات آماری معنادار از دادههای مهم فضای کاهش یافته، روشهای عیبیابی برای سیستمهای بزرگ مقیاس به طرز قابل توجهی توسعه یافتهاند. بزرگترین عیب این دسته، وابستگی شدید به کمیت و کیفیت دادههای فرایند میباشد.
ب. روشهای تحلیلی[20]، این دسته را می توان به عنوان زیر دستهای از گروه ج دستهبندی [4] در نظر گرفت. روشهای تحلیلی بر خلاف روشهای بر پایهی داده، از مدلهای ریاضیاتی استفاده میکنند؛ این مدلهای ریاضیاتی از اصول اولیه به دست میآیند. روشهای تحلیلی در مواردی که اطلاعات کافی از سیستم داریم، کاربرد دارند؛ به عنوان مثال در جایی که مدل رضایتبخش و اطلاعات سنسورهای کافی از سیستم را در اختیار داریم. این دسته شامل روشهای تطبیقی تخیمن پارامتر[21]، روشهای رویتگر[22] و روشهای روابط معادل[23] میباشد. بیشترین کاربرد روشهای تحلیلی در سیستمهای با تعداد ورودی و خروجی و متغیرهای حالت کم میباشد. به کار بردن این روش برای سیستمهای بزرگ مقیاس کار سختی میباشد، چرا که نیازمند مدلی با جزئیات کافی از سیستم میباشد و تعریف همچین مدلی از سیستم بزرگ مقیاس نیازمند دستیابی به تمام وابستگیهای متقابل بین قسمتهای مختلف یک سیستم چند متغیره میباشد. مهمترین مزیت این روش همانگونه که از نام آن برمیآید قابلیت تفسیرپذیری فیزیکی پارامترهای فرایند است. به عبارت دیگر هنگامی که مدل ریاضیاتی جزئی از سیستم در دسترس باشد، استفاده از روشهای تحلیلی عیبیابی نسبت به روشهای برپایهی داده ارجحیت دارد.
ج. روشهای برپایهی اطلاعات، این دسته را می توان به عنوان زیر دستهی دیگری ازگروه ج دستهبندی [4] در نظر گرفت. این روشها از مدلهای کیفی برای توسعهی عملکرد عیبیابی استفاده میکنند.این روشها به خصوص برای زمانی که مدل ریاضیاتی دقیقی از سیستم در دست نیست، بسیار قابل استفاده
است.بسیاری از این روشها بر پایهی اطلاعات غیر دقیق، سیستمهای هوشمند و شناسایی الگو عمل میکنند. همانند روشهای تحلیلی، از این دسته نیز در مورادی که تعداد ورودی، خروجی و متغیرهای حالت سیستم کم باشد استفاده میکنند چرا که تعریف یک مدل کیفی از سیستمهای بزرگ مقیاس نیازمند تلاش بسیار است. گاه با بهره گرفتن از روشهای نرمافزاری، امکان استفاده از روشهای برپایهی اطلاعات، حتی برای سیستمهای پیچیده فراهم میشود.
تا کنون دو دسته بندی متداول از روشهای عیبیابی بیان شده است. اما دستهبندی کاملتری که در برخی مراجع دیده میشود به شرح زیر است. در این دستهبندی، روشها را به دو دستهی اصلی برپایهی مدل و بر پایهی حافظهی فرایند تقسیم میکنند. هر کدام از این دسته های اصلی به دو زیر دسته تقسیم میشوند، زیر دستهی کمی[24] و کیفی[25].
روشهای بر پایهی مدل که در دستهی ج دستهبندی[4] قبلا توضیح داده شد. این روشها بر اساس فهم فیزیکی اولیهای است که از سیستم در اختیار داریم. این اطلاعات پیشین هم در غالب مدلهای کمی و هم در غالب مدلهای کیفی قابل تحقق هستند. مدلهای کمی نیازمند اطلاعات دقیق و جزئی از فیزیک سیستم هستند، در حالی که مدلهای کیفی به صورت قواعد کیفی و مفاهیم فیزیکی کیفی قابل پیادهسازی هستند. دو زیر دستهی اخیر پیش از این در دستهی ب و ج از دستهبندی [1] توضیح داده شدند.
روشهای بر پایهی حافظهی فرایند[26]، از مقادیر کافی دادههای موجود در حافظهی سیستم برای عیبیابی بهره میبرند. دادههای حافظه به اطلاعات مفیدی تغییر شکل یافته و به سیستم تشخیص خطا گزارش میشود. به فرایند تغییر شکل دادههای حافظه به اطلاعات مفید، استخراج مشخصه گویند. استخراج مشخصه هم می تواند طی یک پروسهی کمی صورت پذیرد و هم میتواند طی یک پروسهی کیفی باشد. حالت اول از طریق روشهای جعبهی سیاه[27]، بدون هیچ گونه اطلاعاتی از سیستم و حالت دوم از طریق روشهای جعبهی خاکستری[28]، با اطلاعات کیفی و نسبی راجع به سیستم ممکن است [[v]].
دستهبندی فوق از بین سایر دستهبندیها کاملتر به نظر میآید. روشهای برپایهی مدل کمی را میتوان مجددا به دو زیر دستهی جامع[29] و ساده شده[30] تقسیم کرد. برای مدل کردن حالت گذرای رفتار یک سیستم، استفاده از مدل جامع شامل جزئیات بسیار مفید است. زیر دستهی دوم به جهت سادگی در مورد توجه است؛ چرا که با تبدیل مشتقات جزئی به مشتقات معمولی و یا حتی معادلات جبری، موجب سادگی محاسبات میگردد [[vi]]. مدلهای فیزیکی ساده شده، معمولا از یک مدل ریاضی صریح و ساده استفاده میکنند؛این امر تشخیص عیب را با سهولت بیشتری همراه میکند. مشکل روشهای کمی برپایهی مدل این است که پیچیده هستند و به سختی قابل توسعه میباشند[6]، [[vii]]، [[viii]].
بر خلاف روشهای کمی برپایهی مدل که از روابط ریاضی برای نمایش اطلاعات سیستم استفاده میکنند، روشهای کیفی برپایهی مدل از روابط کیفی و اطلاعات پایهای برای نمایش اطلاعات سیستم استفاده میکنند. این دسته را میتوان به دو گروه روشهای برپایهی قواعد و گروه روشهای بر پایهی اطلاعات فیزیکی کیفی تقسیم کرد. روشهای برپایهی قواعد از اطلاعات سیستم برای نوشتن پایگاهی از قواعد اگر-آنگاه استفاده میکند.این روشها به راحتی قابل توسعه و کاربرد هستند[6]. مدلهای کیفی دربردارندهی اطلاعات کیفی هستند که از رفتار فیزیکی سیستم استنباط میشود [[ix]]. روش های کیفی در فرایندهای غیر حساس بسیار پرکاربرد هستند[6]. وبرای این که بتوان عیب را به درستی تشخیص داد بایستی پایگاه قواعد کاملی داشته باشیم.
روشهای برپایهی حافظهی فرایند، به دنیال یک رابطهی صحیح بین ورودیها و خروجیهای اندازهگیری شده از سیستم هستند. اگر این رابطه هیچگونه کعنای فیزیکی خاصی نداشته باشد، روش جعبه سیاه خواهد بود[6]. اما در صورتی که رابطهی استخراج شده بر اساس معانی فیزیکی نسبی سیستم باشد روش جعبه خاکستری خواهد بود. بهطور کلی روشهای برپایهی حافظه هنگامی که دادههای آموزشی بهراحتی قابل تولید و جمع آوری باشند، بسیار کاربرد خواهند داشت [6].
دسته بندی های مختلفی از روشهای عیبیابی بیان شد. برای این که کاربر بتواند به این روشها اعتماد کند، این روش ها بایستی دارای خصوصیات لازم باشند. این
این مطلب را هم بخوانید :
منبع تحقیق درمورد استان مازندران، دریای خزر، نمونه برداری، شرکتهای تعاونی
خصوصیات در [7] به شرح زیر آمده است:
- کشف و تشخیص سریع محل عیب
- قابلیت تمیز دادن بین انواع مختلف عیب
- قابلیت شناسایی عیوب جدید
- مقاوم بودن، روش عیبیابی بایستی حساسیت کمی نسبت به نویز و عدم قطعیتهای سیستم داشته باشد.
- قابلیت تطبیق، مدلی که برای عیبیابی استفاده میشود، بایستی قابلیت تطبیق به رفتار دینامیکی سیستم را داشته باشد.
- قابلیت تشخیص چندین عیب مختلف
- امکان تفسیر پذیری، تصمیم و عملکرد یک واحد عیبیابی بایستی توجیهپذیر باشد.
- روش عیبیابی بایستی عدم قطعیت سیستم، اغتشاشات فرایند و عیب واقعی را از یکدیگر تمیز دهد.
[1]Fault