شكل (1-7) توزیع تنش برشی در مقطع كانال(لین، 1953) 14
شكل(1-8) حداكثر نیروی كشش ایجاد شده روی بدنه و بستر كانال 15
شكل(1-9) نسبت حداكثر تنش برشی ایجاد شده به در كف و بدنه كانال برای حالت خاص 15
شكل (1-10) نحوه اثر جریانهای ثانویه بر توزیع تنش برشی جداره و کف در یک مجرای روباز
مستقیم 16
فصل دوم: مروری بر تحقیقات گذشته
شكل(2-1) انواع نیروهای وارد بر المان شناور 24
شكل(2-2) ساختار المان شناور سطحی استفاده شده توسط براون و چوبرت(1969) برای اندازه گیری
تنش برشی 26
شكل(2-3) وسیله مورد استفاده توسط فری و تامن 27
شكل(2-4) لوله استنتون 33
شكل (2-5) ساختار حصار زیر لایه 33
شکل (2-6) نواحی چند گانه تقسیم شعاع هیدرولیكی به روش انیشتین 38
شکل(2-7) حداكثر نیروی مالشی در كف و دیواره پیشنهاد شده توسط لین 40
شكل(2-8) توزیع تنش برشی در آبراهه منحنی ذوزنقه ای 42
شکل (2-9)منحنی كالیبراسیون ارائه شده توسط پاتل 44
شكل(2-10) حداكثر تنش برشی بستر در انحنای آبراهه 45
شكل(2-11) منحنی كالیبراسیون ارائه شده توسط کساب جهت تعیین سرعت برشی در روش
لوله پرستون 49
شکل(2-12) توزیع تنش برشی به عنوان تابعی از سرعت زاویهای فلوم 53
شکل(2-13) نمادهای مورد استفاده در معادله یانگ و لیم 56
شكل (2-14) لوله های دایره ای با بستر صاف 59
شكل(2-15) ساختار آنولار فلوم 60
شکل (2-16) گردابه های بزرگ ایجاد شده در ناحیه انتقالی در کانال مرکب مستطیلی 63
شکل (2-17) ساختار منسجم گردابههای بزرگ در لایه اختلاط با بهره گرفتن از تزریق رنگ در کانالهای
مرکب 64
شکل (2-18) نتایج تحقیقات نایت و دمیتریوس بر روی کانال مرکب مستطیلی 68
شکل(2-19) مقایسه نتایج خاتوا و پاترا با نتایج پاترا و کار 69
فصل سوم: مواد و روشها
شکل (3-1) نمای شماتیک و پلان فلوم آزمایشگاهی 76
شکل(3-2) نمای جانبی از فلوم به همراه تجهیزات ورودی و خروجی جریان 78
شکل(3-3) نمایی از بخش متحرک فلوم (بخش لبه چاقویی) 79
شکل(3-4) نمایی از حسگر بار دینامیک 79
شکل (3-5) نمای شماتیک مقطع حالت اول 80
شکل (3-6) نمای شماتیک مقطع حالت دوم 81
شکل (3-7) نمای شماتیک مقطع حالت سوم 81
شکل (3-8) انجام آزمایشات در بستر زبر 82
شکل(3-9) نمای شماتیک لوله پرستون 84
شکل(3-10) نحوه قرارگیری لوله پرستون در کانال 84
شکل(3-11) سیستم مبدل اندازه گیری نوسانات فشار 86
شکل(3-12) سیستم فشارسنج تفاضلی 87
شکل (3-13) ارتفاع سنج سوزنی دیجیتال 89
شکل (3-14) نمایی از حسگر بار دینامیک و نشانگر الکتریکی متصل به آن 91
شكل (3-15) نمای شماتیک مقطع مرکب 95
شکل (3-16) رسوبات چسبانده شده بر روی فلوم 97
شکل (3-17) نمونه مصالح آماده شده جهت انجام آزمایشات 98
فصل چهارم: نتایج و بحث
شکل (4-1) تقسیم بندی کانال مرکب مستطیلی به اجزاء تشکیل دهنده آن 104
شکل (4-2) تغییرات تنش برشی در برابر عمق نسبی برای کف دشت سیلابی در بستر صاف 109
شکل (4-3) تغییرات تنش برشی در برابر نسبت شکل برای کف دشت سیلابی در بستر صاف 109
شکل (4-4) تغییرات تنش برشی در برابر عمق نسبی برای کانال اصلی در بستر صاف 110
شکل (4-5) تغییرات تنش برشی در برابر نسبت شکل برای کانال اصلی در بستر صاف 110
شکل (4-6) تغییرات تنش برشی در برابر عمق نسبی برای دیواره دشت سیلابی در بستر صاف 111
شکل (4-7) تغییرات تنش برشی در برابر نسبت شکل برای دیواره دشت سیلابی در بستر صاف 111
شکل (4-8) تغییرات تنش برشی در برابر عمق نسبی برای دیواره کانال اصلی در بستر صاف 112
شکل (4-9) تغییرات تنش برشی در برابر نسبت شکل برای دیواره کانال اصلی در بستر صاف 112
شکل (4-10) تغییرات تنش برشی در برابر عمق نسبی برای کل بخش سیلابی در بستر صاف 113
شکل (4-11) تغییرات تنش برشی در برابر نسبت شکل برای کل بخش سیلابی در بستر صاف 113
شکل (4-12) تغییرات تنش برشی در برابر عمق نسبی برای کل کانال اصلی در بستر صاف 114
شکل (4-13) تغییرات تنش برشی در برابر نسبت شکل برای کل کانال اصلی در بستر صاف 114
شکل (4-14) تغییرات درصد تنش برشی بخش میانی مجازی در برابر نسبت شکل در بستر صاف115
شکل (4-15) تغییرات درصد تنش برشی بخش میانی مجازی در برابر نسبت عمق در بستر صاف 115
شکل (4-16) تغییرات نسبت تنش در کف دشت سیلابی به تنش کل در برابر نسبت شکل در بستر صاف 116
شکل (4-17) تغییرات نسبت تنش در دیواره دشت سیلابی به تنش کل در برابر نسبت شکل در بستر صاف 117
شکل (4-18) تغییرات نسبت تنش در دیواره کانال اصلی به تنش کل در برابر نسبت شکل در بستر صاف 117
شکل (4-19) تغییرات نسبت تنش در کف کانال اصلی به تنش کل در برابر نسبت شکل در بستر صاف 118
شکل (4-20) مقایسه نتایج تحقیق حاضر با نتایج نایت و دمیتریوس 119
شکل (4-21) مقایسه نتایج تحقیق حاضر با نتایج خاتوا و پاترا 119
شکل(4-22) مقایسه روش مومنتم با روش پرستون برای کلاس 1 در بستر صاف 120
شکل(4-23) مقایسه روش مومنتم با روش پرستون برای کلاس 2 در بستر صاف 121
شکل(4-24) مقایسه روش مومنتم با روش پرستون برای کلاس 3 در بستر صاف 121
شکل (4-25) تغییرات تنش برشی در برابر عمق نسبی برای کف دشت سیلابی در بستر با زبری 1 میلیمتر 124
شکل (4-26) تغییرات تنش برشی در برابر نسبت شکل برای کف دشت سیلابی در بستر با زبری 1 میلیمتر 124
شکل (4-27) تغییرات تنش برشی در برابر عمق نسبی برای کانال اصلی در بستر با زبری 1 میلیمتر 125
شکل (4-28) تغییرات تنش برشی در برابر نسبت شکل برای کانال اصلی در بستر با زبری 1 میلیمتر 125
شکل(4-29) مقایسه روش مومنتم با روش پرستون برای کلاس 1 در بستر با زبری 1 میلیمتر 126
شکل(4-30) مقایسه روش مومنتم با روش پرستون برای کلاس 2 در بستر با زبری 1 میلیمتر 126
شکل(4-31) مقایسه روش مومنتم با روش پرستون برای کلاس 3 در بستر با زبری 1 میلیمتر 127
شکل (4-32) تغییرات نسبت تنش در کف دشت سیلابی به تنش کل در برابر نسبت شکل در بستر با زبری 1
میلیمتر 128
شکل (4-33) تغییرات نسبت تنش در دیواره دشت سیلابی به تنش کل در برابر نسبت شکل در بستر با زبری 1
میلیمتر 128
شکل (4-34) تغییرات نسبت تنش در کف کانال اصلی به تنش کل در برابر نسبت شکل در بستر با
زبری 1 میلیمتر 129
شکل (4-35) تغییرات نسبت تنش در دیواره کانال اصلی به تنش کل در برابر نسبت شکل در بستر با زبری 1 میلیمتر 129
شکل (4-36) مقایسه تنش برشی در بستر صاف و بستر با زبری 1 میلیمتر در کلاس 1 در برابر عمق 130
شکل (4-37) مقایسه تنش برشی در بستر صاف و بستر با زبری 1 میلیمتر در کلاس 2 در برابر عمق 130
شکل (4-38) مقایسه تنش برشی در بستر صاف و بستر با زبری 1 میلیمتر در کلاس 3 در برابر عمق 131
شکل (4-39) مقایسه تنش برشی به روش انرژی در بستر صاف و بستر با زبری 1 میلیمتر در برابر نسبت شکل
در کلاس 1 132
شکل (4-40) مقایسه تنش برشی به روش انرژی در بستر صاف و بستر با زبری 1 میلیمتر در برابر نسبت شکل
در کلاس 2 132
شکل (4-41) مقایسه تنش برشی به روش انرژی در بستر صاف و بستر با زبری 1 میلیمتر در برابر نسبت شکل در
کلاس 3 133
شکل (4-42) مقایسه تنش برشی به روش مومنتوم در بستر صاف و بستر با زبری 1 میلیمتر در برابر نسبت شکل در
کلاس 1 134
شکل (4-43) مقایسه تنش برشی به روش مومنتوم در بستر صاف و بستر با زبری 1 میلیمتر در برابر نسبت شکل در
کلاس 2 134
شکل (4-44) مقایسه تنش برشی به روش مومنتوم در بستر صاف و بستر با زبری 1 میلیمتر در برابر نسبت شکل در
کلاس 3 135
شکل (4-45) تغییرات تنش برشی بروش انرژی در برابر نسبت شکل برای کلیه بسترها از نظر زبری مربوط به کلاس 1 136
شکل (4-46) تغییرات تنش برشی بروش انرژی در برابر نسبت شکل برای کلیه بسترها از نظر زبری مربوط به کلاس 2 137
شکل (4-47) تغییرات تنش برشی بروش انرژی در برابر نسبت شکل برای کلیه بسترها از نظر زبری مربوط به کلاس 3 137
شکل (4-48) تغییرات تنش برشی بروش مومنتوم در برابر نسبت شکل برای کلیه بسترها از نظر زبری مربوط به کلاس 1 139
شکل (4-49) تغییرات تنش برشی بروش مومنتوم در برابر نسبت شکل برای کلیه بسترها از نظر زبری مربوط به کلاس 2 139
شکل (4-50) تغییرات تنش برشی بروش مومنتوم در برابر نسبت شکل برای کلیه بسترها از نظر زبری مربوط به کلاس 3 140
فصل اول
مقدمه و تئوری
این مطلب را هم بخوانید :
- مقدمه
اطلاعات در خصوص طبیعت توزیع جریان در یک کانال ساده و مرکب نیازمند حل متغیرهای مسائل هیدرولیک رودخانهها و مسائل مهندسی نظیر مفهوم رابطه مقاومت جریان، مکانیسم انتقال رسوب، طراحی کانال پایدار، پوشش کانالها و … می باشد.
تعیین دقیق تنش برشی بستر و دیواره از دیدگاه تئوریک و همچنین از دیدگاه مسائل کاربردی نظیر نقش آن در مطالعات فرسایش و رسوبگذاری و طراحی پوششهای حفاظتی از اهمیت خاصی برخوردار است. کانالهای مرکب شامل یک کانال اصلی عمیق و یک یا دو دشت سیلابی در اطراف آن میباشند که بصورت نسبی عمق کمتری نسبت به کانال اصلی دارند. مطالعات هیدرولیکی بر روی این کانالها به دلیل تاثیر متقابل دشتهای سیلابی و کانال اصلی بمراتب پیچیده تر از کانالهای معمولی است.
زمانیکه عمق جریان در یک کانال طبیعی از عمق مجاز کانال تجاوز می کند، دشتهای سیلابی را که در مجاورت آن قرار دارند پوشانیده و بخشی از جریان در دشتهای سیلابی حمل میگردد. بدلیل تفاوت شرایط هیدرولیکی بین دو مقطع (کانال اصلی و دشتهای سیلابی)، سرعت متوسط در کانال اصلی با دشتهای سیلابی متفاوت می گردد (سرعت متوسط در کانال اصلی بسیار بیشتر از سرعت در دشت سیلابی است). بنابراین جریان در کانال اصلی با شتاب بیشتری بر روی دشتهای سیلابی اعمال میگردد. این فرایند باعث انتقال مومنتوم بین جریان در کانال اصلی و دشتهای سیلابی اطراف میگردد. تاثیر متقابل فرایند مذکور وقتی که جریان برروی دشت سیلابی خیلی کم است، نمود بیشتری داشته و رفته رفته با افزایش عمق آب برروی دشت سیلابی، از میزان آن کاسته میشود. عدم استنباط صحیح از این فرایند، باعث میشود که در طراحی کانالهای پایدار میزان دبی واقعی بسیار بیشتر یا بسیار کمتر برآورد گردد.
بر طبق مطالعات دفتر مهندسی عمران آمریکا[1]، هنگامیکه آب در کانال جریان مییابد، نیرویی در جهت حرکت آب بر سطح بستر کانال اثر می کند. این نیرو بطور ساده نیروی کشش آب بر روی محیط مرطوب است و نیروی مالشی[2] نام دارد. بر اساس تقسیمبندیهای کلی، تنش برشی به دو دسته آرام و آشفته تقسیم بندی میگردد. تنش برشی دیواره (تنش برشی در نزدیکی دیوار یا زیر لایه ورقهای) از اهمیت بسیار زیادی برخوردار است. در بیرون از لایه آرام، تنش برشی آشفته حکمفرماست. یک لایه بینابینی هم وجود دارد که هردوی تنشهای آرام و آشفته در آن رخ میدهد. در برخی از متون اشاره گردیده که میزان تنش برشی آشفته تا دهها هزار برابر تنش برشی آرام است. شکل (1-1) چگونگی توزیع پروفیل سرعت و توزیع تنش برشی آرام و آشفته را نشان می دهد.
شكل(1-1): پروفیل سرعت در جریان آشفته و منحنی تنش
یکی از مهمترین تفاوتهای ماهیت جریان در شرایط آزاد و تحت فشار در عوامل ایجاد جریان این دو شرایط است. در مجاری تحت فشار، عامل اصلی جریان اختلاف فشار بین دو مقطع از جریان است در حالیکه در مجاری روباز عامل اصلی جریان، نیروی ثقل میباشد. در مجاری تحت فشار عمدتاً بدلیل آنکه نوع مقطع به هندسه دایروی نزدیک است، تنش برشی در تمام مقطع تقریباً برابر است در حالیکه در مجاری روباز بدلیل آنکه عموماً نوع مقطع از جنس مستطیلی یا ذوزنقهای است و با توجه به آنکه سطح جریان با اتمسفر آزاد در تماس است، عملاً در سطح جریان هیچ نوع تنش برشی وجود ندارد در حالیکه در جدارهها و کف میزان تنش برشی بصورت معناداری وجود داشته و دارای توزیعی غیر یکنواخت است.