2-3- مروری بر راهکارهای ارائه شده در گذشته برای بهبود الگوریتم نزدیکترین همسایه. 15
فصل سوم 18
روشهای تصمیم گیری دستهجمعی.. 18
3-1- مقدمه. 19
3-2- روشهای متفاوت برای ایجاد یک تصمیمگیر دستهجمعی.. 21
3-3- ساختارهای مختلف در روش تصمیم گیری دستهجمعی.. 22
3-4- رایگیری بین دستهبندها 23
3-5- معرفی چند روش تصمیم گیری دستهجمعی پرکاربرد. 24
فصل چهارم 28
روش پیشنهادی برای دستهجمعی کردن الگوریتم نزدیکترین همسایه. 28
4-1- مقدمه. 29
4-2- ایدهی اصلی.. 30
4-3- دستهجمعی کردن مجموعه دستهبندهای وزندار نزدیکترین همسایه. 31
فصل پنجم 39
نتایج آزمایشات پیاده سازی و نتیجه گیری.. 39
5-1- نتایج.. 40
فصل ششم 45
نتیجه گیری 45
فهرست منابع.. 48
- مقدمه
در دنیای امروزی حجم اطلاعات دیجیتالی به صورت روز افزونی در حال افزایش است. در همین راستا، به جهت مدیریت و بررسی علمی این اطلاعات، نیاز به پردازش هوشمندانه و خودکار این اطلاعات بیش از پیش احساس می شود.
یکی از مهم ترین این پردازش ها که در فناوری اطلاعات و ارتباطات مورد نیاز است، دستهبندی خودکار این اطلاعات می باشد. دسته بندی در مسائل متنوعی در فناوری اطلاعات به کار گرفته می شود، در مسائلی مانند امنیت اطلاعات، شناسایی نفوزگری در شبکه، دسته بندی کاربران بر اساس اطلاعات شخصی، پردازش تصویر و در واقع شناسایی هر گونه الگو بر اساس نمونهها و اطلاعات پیشین. این پردازش می تواند دسته[1]ی نمونههای جدید که به مجموعه اطلاعات اضافه می شود را پیش بینی نماید. از این رو در هوش مصنوعی توجه خاصی به توسعه انواع روشهای دستهبندی هوشمند و خودکار شده است.
روشهای دستهبندی
دستهبندی یکی از مهمترین شاخههای یادگیری ماشین[2] است. دستهبندی به پیش بینی برچسب دسته[3] نمونه[4] بدون برچسب، بر اساس مجموعه نمونههای آموزشی برچسبدار (که قبلا به با کمک یک کارشناس دستهبندی شده اند) گفته میشود. درواقع دستهبندی روشی است که هدف آن، گروهبندی اشیا به تعدادی دسته یا گروه میباشد. در روشهای دستهبندی، با بهره گرفتن از اطلاعات بدست آمده از مجموعه نمونههای آموزشی، از فضای ویژگیها[5] به مجموعه
این مطلب را هم بخوانید :
آموزش طراحی سایت فروشگاهی با جنگو و پایتون - دانشجویی
برچسب دستهها نگاشتی بدست می آید که بر اساس آن، نمونههای بدون برچسب به یکی از دستهها نسبت داده میشود.
در مسائل دستهبندی، هر نمونه توسط یک بردار ویژگی[6] به صورت X=<x1 , x2 , xm> معرفی میشود که نشان دهندهی مجموعه مقادیر ویژگیهای نمونهی مربوطه است. بر اساس این بردار، نمونهی X دارای m خصوصیت یا ویژگی است. این ویژگیها میتوانند مقادیر عدد صحیح، اعشاری ویا مقادیر نامی[7] به خود اختصاص بدهند. همچنین این نمونه دارای یک برچسب C است که معرف دستهای است که نمونهی X به آن تعلق دارد.
تفاوت روشها دستهبندی در چگونگی طراحی نگاشت است. در بعضی از آنها با بهره گرفتن از داده های آموزشی مدلی ایجاد میشود که بر اساس آن فضای ویژگیها به قسمتهای مختلف تقسیم میشود که در آن، هر قسمت نشان دهندهی یک دسته است. در این گونه روشهای دستهبندی از مدل برای پیش بینی دستهی نمونه بدون برچسب استفاده شده و از نمونههای آموزشی به طور مستقیم استفاده نمی شود. یک نمونه از این دستهبندها، دستهبندهای احتمالی[8] میباشد. این گونه الگوریتمها، از استنتاج آماری برای پیدا کردن بهترین دسته استفاده می کنند؛ برخلاف سایر دستهبندها که فقط بهترین کلاس را مشخص می کنند الگوریتمهای احتمالی به ازای هر دسته موجود یک احتمال را به عنوان تعلق نمونه به آن مشخص می کنند و کلاس برنده، بر اساس بیشترین احتمال انتخاب میشود. روشهای احتمالی در یادگیری ماشین معمولا با نام الگوریتمهای آماری نیز شناخته میشوند. در گروهی دیگر از روشهای دسته بندی، نمونه براساس خود مجموعه نمونهها و بدون ساختن مدل، به پیش بینی دستهی نمونه مورد نظر می پردازد. به این گونه الگوریتم های دستهبندی، نمونه- بنیاد[9] گفته میشود.