شکل 2‑18: (a) شدت امواج نشتی ناشی از تحریک توسط میدان با قطبشTM که نشان دهنده انتشار پلاسمونهای سطحی از نقطه تحریک است. (b) با توجه به اینکه تحریک توسط میدان با قطبش TE است تحریک پلاسمونها انجام نشده است………………………………………………………………….63
شکل 2‑19: تحریک پلاسمونهای سطحی با بهره گرفتن از میدانهای نزدیک یک روزنه با ابعاد کوچکتر از طول موج……………………………………………………………………………………………………………………….64
شکل 2‑20: یک چیدمان معمول برای اعمال یا اندازه گیری میدان نزدیک یک روزنه با ابعاد کوچکتر از طول موج که برای تحریک و اندازه گیری پلاسمونهای سطحی استفاده میشود. (a) تصویر SEM از روزنه یک پروب. (b)و© دو چیدمان معمول از تحریک و آشکارسازی پلاسمونهای سطحی از طریق نور منتشر شده داخل زیرلایه در میدان دور . (d)تصویر یک لایه نازک نقره………………………………………………………………………………………………………………………………………………….65
شکل 2‑21: تحریک پلاسمونهای سطحی منتشر شده بر روی سطح موجبر پلاسم.نیک با بهره گرفتن از روش Fiber Taper. شدت توان انتقالی از فیبر در طول موج 1590 nm به شدت
شماره و عنوان | صفحه |
کاهش یافته که ناشی از تحریک پلاسمونها است………………………………………………………………………..67
شکل 2‑22: (a) نمایی از موجبر هایبرید. (b)و©توزیع چگالی توان بهترتیب برای مد TM و TE ابعاد موجبر برابر است. (d) توزیع چگالی توان برای مد TM با ابعاد . طول موج نور 1550nm است…………………………………………………………………………………………………………………………………………………70
شکل 2‑23: چگونگی ایجاد یک مد هایبرید با تزویج مدهای دیالکتریک و پلاسمون سطحی. (a)ساختار موجبر (b) چگالی توان نرمالیزه شده. در این ساختار ابعاد چنین است: . طول موج نورنیز 1550nm میباشد……………………………………………..72
شکل 2‑24: مقایسه توزیع چگالی توان نرمالیزه شده برای مد هایبرید و مد پلاسمون سطحی با تلف انتشاری یکسان……………………………………………………………………………………………………………………….73
شکل 2‑25: ساختار پایه موجبر هایبرید پلاسمونیک…………………………………………………………………77
شکل 2‑26: (a)ساختار موجبر هایبرید پلاسمونیک دو بعدی. (b)چگالی توان نرمالیزه شده در موجبر………………………………………………………………………………………………………………………………………………79
شکل 2‑27: ساختارهای گوناگون هایبرید پلاسمونیک که در سالهای اخیر معرفی شده اند…….80
شکل 2‑28: اثرات تغییرات عرض موجبر و ارتفاع لایه گپ برای . (a) قسمت حقیقی ضریب شکست موثر (b) طول انتشار بر حسب میکرومتر © اندازه مد………………………………………83
شکل 2‑29: اثرات تغییرات عرض موجبر و ارتفاع لایه گپ برای . (a) قسمت حقیقی ضریب شکست موثر (b) طول انتشار بر حسب میکرومتر © اندازه مد………………………….83
شکل 2‑30: تغییرات (a) اندازه مدی (b)طول انتشار و قسمت حقیقی ضریب شکست موثر بر حسب تغییر طول موج برای موجبر هایبرید پلاسمونیک با ابعاد …………………………………………………………………………………85
شکل 2‑31: نمایی از ساختار و عملکرد فیلتر برگ در طول موجهای باند عبور و باند قطع……..86
شماره و عنوان | صفحه |
شکل 2‑32: گستره طیفی بازتابشی یک فیلتر برگ برحسب طولموج و نوار گاف مرکزی آن…..88
شکل 2‑33: گستره طیفی بازتابشی یک فیلتر برگ با یک نقص در مرکز آن برحسب طولموج و تشکیل یک حفره تشدید در مرکز نوار گاف آن……………………………………………………………………………..89
شکل 2‑34: ساختارهای فیلتر برگ IMI (a)توری گاف فلزی. (b) توری عرض پله ای نوار فلزی و © تعریف مشخصات دوره تناوب آن……………………………………………………………………………………………..90
شکل 2‑35: پاسخ طیفی فیلتر برگ IMI گاف فلزی در طول توریهای مختلف (a)منحنی انتقال (b)منحنی بازتابش………………………………………………………………………………………………………………………….92
شکل 2‑36: پاسخ طیفی فیلتر برگ IMI عرض پله ای نوار فلزی در طول توریهای مختلف (a)منجنی انتقال (b)منحنی بازتابش…………………………………………………………………………………………….93
شکل 2‑37: دو ساختار معمول فیلتر برگ MIM. (a) ساختار توری گاف دیالکتریک (b) ساختار توری پلهای نوار دیالکتریک…………………………………………………………………………………………………………..94
شکل 2‑38: (a) ساختار یک دوره تناوب توری گاف دیالکتریک (b) ساختار یک دوره تناوب توری پلهای نوار دیالکتریک © تابع انتقال آنها بر اساس مشخصات ابعادی مختلف ساختار MIM………………………………………………………………………………………………………………………………………………96
شکل 2‑39: ساختار فیلتر برگ هایبرید پلاسمونیک همراه با نمایش یک دوره تناوب آن………98
شکل 2‑40: نمودار طیف انتقال برحسب طولموج فیلتر برگ هایبرید پلاسمونیک در سه مقدار متفاوت ……………………………………………………………………………………………………………………………………..99
شکل 3‑1: نمودار طول انتشار بر حسب طول موج تحریک برای فلزات نجیب. داده ها بر اساس ضریب شکستهای ارائه شده توسط پالیک[11, 35] و جانسون-کریستی [10] میباشد….103
شکل 3‑2: ساختار کرشمن پیادهسازی شده در نرم افزار همراه با لایه PML در اطراف آن…104
شکل 3‑3: مولفه z میدان مغناطیسی (a)ساختار کرشمن بدون مرز PMC (b) همراه با مرزPMC و بهبود نمایش میدان ………………………………………………………………………………………………………………..106
شکل 3‑4: چیدمان آزمایشگاهی تحریک پلاسمونهای سطحی با ساختار کرشمن……………..109
شماره و عنوان | صفحه |
شکل 3‑5: شدت بازتابش از سطح موجبر صفحه ای برحسب تغییر زاویه ی تابش………………111
شکل 3‑6: مراحل لایهنشانی موجبر کانالی به روش لیتوگرافی (a) ویفر سیلیکن-سیلیکا.(b) لایه نشانی ماده فوتورزیست بر روی زیرلایه. ©و (d) نوشتن موجبرکانالی به عرض 8 میکرومتر بر روی ماده فوتورزیست. (e) لایه نشانی کروم و نقره بر روی ماده فوتورزیست . (f) پاک کردن قسمتهای تحت تابش نبوده ماده فوتورزیست و باقی ماندن نوار فلزی . (g) ایجاد موجبر سیلیکا-نقره-هوا…………………………………………………………………………………………………………………………………………………113
شکل 3‑7: دستگاه لایه نشانی چرخشی و محل قرار گرفتن زیرلایه……………………………………..114
شکل 3‑8: چیدمان موجبر نویس با بهره گرفتن از تابش مستقیم بیم باریک شده لیزر……………..114
شکل 3‑9: تصویر موجبر پلاسمونیکی با پهنای 8 میکرومتر و ضخامت 40نانومتر که در شکل به صورت نوار روشن قابل رویت است……………………………………………………………………………………………..115
شکل 3‑10: شدت بازتابش از سطح موجبر کانالی با پهنای 8 میکرومتر برحسب تغییر زاویه تابش و مشاهده زاویه تزویج…………………………………………………………………………………………………………116
شکل 3‑11: چیدمان آزمایشگاهی لازم برای اندازه گیری کمره بیم تابیده شده به قاعده
منشور……………………………………………………………………………………………………………………………………………119
شکل 3‑12: نمودار شدت بیم رسیده به آشکارساز بر حسب تفییر فاصله زاویه قائم منشور از محل تابش بیم به قاعده آن…………………………………………………………………………………………………………………120
شکل 3‑13: منشور قائم الزاویه SF6 که کروم و نقره بر روی قاعده آن لایه نشانی شده است…121
شکل 3‑14: چیدمان آزمایشگاهی اندازه گیری زاویه های تزویج با ساختار اتو در موجبر (منشور-نقره-پلیمر)…………………………………………………………………………………………………………………………………..122
شکل 3‑15: نمودار شدت پرتو بازتابش شده ار قاعده منشور و رسیده به آشکارساز در چیدمان شکل (3-14)، برحسب زاویه های تابش نور به منشور……………………………………………………………..123
شکل 3‑16: تصویر مادون قرمز مد نوری انتشاری در موجبر پلیمری که توسط پلاسمونهای سطحی تحریک شده است…………………………………………………………………………………………………………124
شماره و عنوان | صفحه |
شکل 3‑17: چیدمان اندازه گیری شدت مد نوری ناشی از پراکندگی SPPs……………………………..125
شکل 3‑18: تصویر چیدمان شکل (3-17) در آزمایشگاه………………………………………………………….126
شکل 3‑19: نمودار تغییرات شدت بیم رسیده به آشکارساز در چیدمان شکل (3-17) برحسب فاصله محل تحریک پلاسمونها از نقطه ناپیوستگی در زاویه تزویج 32 درجه……………………….126
شکل 3‑20: نمودار تغییرات شدت بیم رسیده به آشکارساز در چیدمان شکل (3-17) برحسب فاصله محل تحریک پلاسمونها از نقطه ناپیوستگی در زاویه تزویج 35 درجه…………………………..127
شکل 3‑21: نمودار شدت پرتو بازتابش شده ار قاعده منشور و رسیده به آشکارساز در چیدمان شکل ((3-14)که منشور بدون لایهنشانی فلزی باشد)، برحسب زاویه های تابش نور به منشور..128
شکل 3‑22: نمودار شدت نور خروجی از موجبر پلیمری برحسب فاصله بین زاویه قائم منشور و محل ایجاد بازتابش داخلی کامل، در زاویه تزویج 34 درجه…………………………………………………….129
شکل 3‑23: نمودار شدت نور خروجی از موجبر پلیمری برحسب فاصله بین زاویه قائم منشور و محل ایجاد بازتابش داخلی کامل، در زاویه تزویج 36 درجه…………………………………………………..130
شکل 4‑1: فیلتر برگ هایبرید پلاسمونیک با پروفایل مستطیلی. (a) مشخصات یک دوره تناوب توری (b)ساختار توری برگ با 18 دوره تناوب……………………………………………………………………………134
شکل 4‑2: نمودار زمانی تابع موج تابش شده به ساختار فیلتر برگ هایبرید پلاسمونیک………137
شکل 4‑3: نمودار طیف انتقال فیلتر برگ هایبرید پلاسمونیک با پروفایل مستطیلی برای سه حالت مختلف …………………………………………………………………………………………………………………………..139
شکل 4‑4: فیلتر برگ هایبرید پلاسمونیک با پروفایل سینوسی. (a) مشخصات یک دوره تناوب توری (b)ساختار توری برگ با 18 دوره تناوب…………………………………………………………………………..140
شکل 4‑5: مقایسه طیف انتقال مربوط به ساختار HPBR با پروفایل سینوسی با ساختار با پروفایل مستطیلی (a) (b) © …………………………………..142
شکل 4‑6: دامنه نرمالیزه شده میدان الکتریکی در راستای قطبش اعمالی، برای مد هایبرید پلاسمونیک ایجاد شده در ساختارهای HPBR با پروفایلهای مستطیلی و سینوسی،
شماره و عنوان | صفحه |
…………………………………………………………………………………………………………..143
شکل 4‑7: توزیع اندازه بردار پوینتینگ درجهت انتشاری Z در طولموجهای تابش شده (a) 1480nm (b) 1550nm © 1720nm در ساختار با پروفایل سینوسی……………………………………144
شکل 4‑8: فیلتر برگ هایبرید پلاسمونیک با پروفایل دندانه ارهای. (a) مشخصات یک دوره تناوب توری (b)ساختار توری برگ با 18 دوره تناوب……………………………………………………………………………145
شکل 4‑9: مقایسه طیف انتقال مربوط به ساختار HPBR با پروفایل دندانه ارهای با ساختارهای با پروفایل مستطیلی و سینوسی (a) (b) © ………………..147
شکل 4‑10: دامنه نرمالیزه شده میدان الکتریکی در راستای قطبش اعمالی، برای مد هایبرید پلاسمونیک ایجاد شده در ساختارهای HPBR با پروفایلهای مستطیلی و سینوسی و دندانه ارهای، …………………………………………………………………………………………………..148
شکل 4‑11: توزیع اندازه بردار پوینتینگ درجهت انتشاری Z در طولموجهای تابششده (a)1480nm (b) 1550nm © 1720nm در ساختار با پروفایل دندانه ارهای…………………………..149
شکل 4‑12: ساختار فیلتر برگ هایبرید پلاسمونیک دندانه ارهای با عملیات آپودیزشن 150
شکل 4‑13: نمودار طیف انتقال ساختار دندانه ارهای و ساختار دندانه ارهای آپودایز شده در حالت 151
فصل اول
مقدمه
1 مقدمه
1-1 مقدمه و اهمیت موضوع
اپتیک یکی از شاخههای علم است که قبل از تعریف نور به صورت بستههای فوتون پیشرفتهای زیادی کرده بود. تعریف نور به صورت امواج الکترومغناطیسی با طولموجهای معین، کمک شایانی به گسترش این علم داشته است. فوتونیک نام دیگری برای این علم بود که با تعریف ذرهای نور، به میان آمد. در این تعریف نور را به صورت بسته ای از ذرات بدون جرم با تکانه[1]مشخص بیان کردند. بنابراین خواص موجی و ذره ای نور هر دو باعث گسترش علم نور یا اپتیک شدند. پیشرفت تکنولوژی، کاربرد نور را در زمینه های مخابراتی ، شناسایی مواد، حسگر های زیستی و مدارات با ابعاد نانومتری وسیعتر کرده است.
مدارات مجتمع نوری از جمله بحثهایی است که با پیشرفت علم اپتیک مورد توجه فراوان محققان قرار گرفت. البته در کوچکسازی ادوات نوری محدودیتهای بنیادی مشاهده شد. مهمترین این محدودیتها چنین بیان میکرد که نور نمی تواند در مکان یا فضا در ابعاد کمتری از طول موج جایگزیده شود. دانشمندان در استدالهای فیزیکی خود کمترین حدی برای این جایگزیدگی مشخص کردند. این کمترین حد برای کوچک کردن ابعاد قطعات و دقت[2] مشاهده اشیا، حد پراش[3] نامگذاری شد.
پلاسمونهای سطحی (مباحث نظری آن در فصلهای آتی بیان می شود) که با نام کامل پلاسمون پلاریتونهای سطحی[4] (SSP) تعریف شده اند، امواج الکترومغناطیسی سطحی هستند که به موازات سطح مشترک فلز-دی الکتریک منتشر میشوند. تعریف کامل این امواج اولین بار در سال 1957 میلادی( ذکر سالها در متن همگی به میلادی است) توسط آقای ریتچر[5] بهطور کامل با کاربرد اپتیکی معرفی شدند. این امواج در دهههای اخیر کاندیدای کاهش ابعاد اپتیک به دو بعد شده اند به طوری که توانایی گذشتن از حد پراش (که در ادامه توضیح داده خواهد شد) را دارند [1].
برتریهای ساخت ادوات نوری با ابعاد میکرومتری و نانومتری همراه با پشرفت تکنولوژیهای نمایش مانند نمایش میدان نزدیک اپتیکی[6](SNOM) باعث توجه
این مطلب را هم بخوانید :
پردرآمدترین بازیکنان فوتبال جهان
بیشتر به تحقیقات در این حوزه از فوتونیک شده است. این حوزه را بخاطر ابعاد نانومتری عناصر آن نانوفوتونیک و پلاسمونیک مینامند.
پلاسمونیک حوزهای است که با خواص الکترومغناطیسی خود بعضی از ویژگیهای الکترونیک را دارد. انتقال اطلاعات در این حوزه در مقایسه با الکترونیک، با فرکانسهای خیلی بالاتر انجام میشود و پهنای باند خیلی بیشتری قابل دسترسی است. اپتیک نیاز به خطوط موجبری بزرگتری نسبت ابعاد نانو دارد که با توجه به محدودیت حد پراش کوچکسازی قطعات موجبری با مشکل مواجه میشود.
مدارات الکترونیکی نیز از ابعاد بزرگتری نسبت به اداوات اپتیکی تشکیل میشوند. علاوهبراین، در مدارهای الکترونیکی در تبادل داده بین مبدا و مقصد، تاخیری ایجاد میشود که سرعت مدارها با کاهش شدیدی روبرو میشود. در مدارهای اپتیکی این سرعت افزایش مییابد علاوهبر اینکه ظرفیت خط انتقال هم افزایش پیدا می کند. ولی همچنان مشکل حد پراش مانع اصلی در کوچکسازی مدارها میباشد.
پلاسمونیک پهنای باند اپتیکی را با ابعاد کمتر از حد پراش معرفی می کند. بنابراین می تواند اپتیک و عناصر آن را با پهنای باند خیلی بزرگتر و موجبرهای خیلی کوچک ریزسازی کند. پس همه مزیتها و خواص مدارهای الکترونیکی و اپتیکی را با هم ترکیب می کند. این تکنولوژی نیاز به توسعه بیشتری دارد چرا که دارای معایبی مانند طول انتشار کم امواج پلاسمون سطحی است.
در سالهای اخیر تحقیقات زیادی برای کم کردن معایب این امواج با بهره گرفتن از خواص مواد در تقویت امواج و ساختارهای هایبرید[7] شروع شدهاست. اندازه گیریها نیز در علم پلاسمونیک پیچیدگی زیادی به خود گرفته است. به همین خاطر بخشی از تحقیقات نیز صرف ساده سازی اندازه گیریها از طریق ویژگیهای ذاتی این امواج در مشاهده پلاسمونها و اندازه گیری طول انتشار آنها میشود.
هدف از انجام این پایان نامه طراحی و شبیهسازی فیلترهای پلاسمونیک برگ برای کاربرد در مدارهای پسیو بود. لذا در این پایان نامه بعد از مروری بر تاریچه علم پلاسمونیک و تعریف اجمالی پلاسمون پلاریتونهای